ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aggression/physiology  (1)
  • Chemistry and Materials (General); Quality Assurance and Reliability  (1)
  • 1
    Publication Date: 2014-05-16
    Description: Mice display robust, stereotyped behaviours towards pups: virgin males typically attack pups, whereas virgin females and sexually experienced males and females display parental care. Here we show that virgin males genetically impaired in vomeronasal sensing do not attack pups and are parental. Furthermore, we uncover a subset of galanin-expressing neurons in the medial preoptic area (MPOA) that are specifically activated during male and female parenting, and a different subpopulation that is activated during mating. Genetic ablation of MPOA galanin neurons results in marked impairment of parental responses in males and females and affects male mating. Optogenetic activation of these neurons in virgin males suppresses inter-male and pup-directed aggression and induces pup grooming. Thus, MPOA galanin neurons emerge as an essential regulatory node of male and female parenting behaviour and other social responses. These results provide an entry point to a circuit-level dissection of parental behaviour and its modulation by social experience.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105201/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105201/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Zheng -- Autry, Anita E -- Bergan, Joseph F -- Watabe-Uchida, Mitsuko -- Dulac, Catherine G -- F32 DC010089/DC/NIDCD NIH HHS/ -- R01 DC003903/DC/NIDCD NIH HHS/ -- R01 DC009019/DC/NIDCD NIH HHS/ -- R01 DC013087/DC/NIDCD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 May 15;509(7500):325-30. doi: 10.1038/nature13307.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24828191" target="_blank"〉PubMed〈/a〉
    Keywords: Aggression/physiology ; Animals ; Copulation ; Female ; Galanin/deficiency/genetics/*metabolism ; Grooming/physiology ; Male ; Maternal Behavior/*physiology ; Mice ; Neurons/*metabolism ; Optogenetics ; Paternal Behavior/*physiology ; Pheromones/analysis ; Preoptic Area/*cytology/metabolism ; TRPC Cation Channels/deficiency/genetics ; Vomeronasal Organ/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-26
    Description: Tests and analyses were conducted on a series of geometrically-scaled double edge notch compression specimens to validate the capability of the fiber-kinking model in the NASA continuum damage mechanics code for progressive damage analysis, CompDam. The tests and analyses focused on the fiber-kinking damage mechanism, which is of critical importance for predicting accurately longitudinal compression failure in carbon fiber reinforced polymer laminates. The fiber-kinking model in CompDam was augmented with a new capability to represent a hardening response once a kink band has fully formed, enabling prediction of band broadening. Correlation of the test and analysis results showed agreement in stiffness and strength with less than 10% error. The analysis predicts the same sequence of events leading to ultimate failure that was found in the test. The overall excellent correlation in terms of stiffness, strength, and failure process validates the capability of the model for predicting longitudinal compression failure in notched laminates with cross-ply layups.
    Keywords: Chemistry and Materials (General); Quality Assurance and Reliability
    Type: NF1676L-29494 , American Society for Composites Technical Conference; Sep 24, 2018 - Sep 26, 2018; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...