ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 6 (1995), S. 616-625 
    ISSN: 1042-7147
    Keywords: ternary blends ; phase diagrams ; interaction parameters ; melting point depression ; crystallization kinetics ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The phase behavior of ternary blends was analyzed on the basis of the lattice approach. Both compatibilization and incompatibilization effects are predicted to occur depending on the relative magnitudes and the sign of the interaction parameters of the binary subsystems. Thermodynamic, structural and kinetic properties were investigated for a ternary model blend composed of poly(vinylidene fluoride), poly(methyl methacrylate) and poly(vinyl acetate). This particular ternary system is characterized by a specific symmertry with respect to the interactions in the binary subsystems. This symmetry affects both thermodynamic and structural properties. The experimentally determined interaction parameters were used to model the phase diagram on the basis of the lattice model: the theoretical phase diagram was found to be close to the experimental one. The crystallization processes were analyzed both for the binary and the ternary systems on the basis of a modified Turnbull-Fisher equation. The conclusions are that the properties of the ternary systems can be understood to a first approximation on the basis of those of the corresponding binary systems and the symmetry of the interactions.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...