ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 63 (1997), S. 121-131 
    ISSN: 0020-7608
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Results from close coupling sensitivity density-based analyses are compared for some representative nonadiabatic collisions with those from Landau-Zener-Stueckelberg (LZS) and adiabatic analyses. These results seem to indicate that while for simple systems modeled by potential energy curves devoid of competing features LZS and adiabatic approaches also offer qualitatively correct insights these can be misleading for dynamics evolving on potential energy curves with competing features. The close-coupling sensitivity densities seem to offer a more reliable guide for detailed understanding of the impact of structure in potential energy curves and coupling matrix elements in the collisional outcome. © 1997 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 23 (1991), S. 957-970 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: As part of an ongoing program to model hydrocarbon assisted boron combustion, a kinetic model has been developed to describe gasification of the ubiquitous boron oxide coating that inhibits particulate boron ignition. This model includes homogeneous gas phase oxidation reactions, multi-component gas phase diffusion, heterogeneous surface reactions, and oxide vaporization. The kinetic processes are treated using a generalized kinetics code, with embeded sensitivity analysis, for the combustion of a one-dimensional (particle radius), spherical particle.This article presents the heterogeneous surface reactions used to describe oxide gasification and presents selected model results for a spherical boron oxide droplet which illustrate the dependence of the oxide gasification rates on the ambient temperature and particle diameter.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 26 (1994), S. 437-453 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The role of mechanistic steps, diffusion, and their interrelation is explored in a steady-state premixed laminar CO + H2 + O2 flame using a numerical model. Sensitivity coefficients and Green's functions calculated for this system offer systematic characterization of the role of diffusion and exothermicity in carbon monoxide oxidation kinetics. The results reveal that the uncertainties in transport parameters are as important to the model predictions as those in the kinetic steps. The rate controlling steps of the CO + H2 + O2 reaction are found to be different for adiabatic and nonadiabatic premixed flames, and also for systems with and without transport. In particular, the reactions of the hydroperoxyl radical with hydrogen, oxygen, and hydroxyl radicals are found to be important at all temperatures in the fuel lean (40 torr) adiabatic flame studied here. The diffusive mixing of chemical species from the low and the high temperature portions of the flame and the larger heats of reaction associated with the hydroperoxyl radicals are found to be responsible for the increased importance of these reactions. © 1994 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 11 (1979), S. 1237-1248 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The recent interest in numerical modeling of chemical kinetics has generated the need for proper analysis of the system sensitivities in such models. This paper describes the logic for a program developed by the authors to implement the Green's function method of sensitivity analysis in complex kinetic schemes. The relevant equations and numerical details of the algorithm are outlined, two flow charts are provided, and some special programming considerations are discussed in some detail. Computer storage and computational time considerations are also treated. Finally, applications of sensitivity information to understanding complex kinetic system behavior and analyzing experimental results are suggested.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 23 (1991), S. 251-278 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Stability and sensitivity analysis are used to examine the ignition/reaction characteristics of dilute hydrogen-oxygen mixtures. The analysis confirms the existence of two distinct regions of ignition and fast reaction previously labeled “weak” and “strong” ignition, both of which are located in the explosive pressure-temperature domain and separated by a region related to the “extended” classical second limit. The stability analysis is based on an eigenanalysis of the Green's function matrix of the governing kinetic equations. The magnitudes of the largest (and system controlling) eigenvalue allow the strengths of the two processes to be quantified, giving a clear definition to the terms “weak” and “strong.” The sensitivities of the largest eigenvalue to the reaction rate constants of the mechanism pinpoint the elementary steps controlling the two ignition processes and the subsequent reaction. The associated eigenvectors yield the direction of change in species concentrations and temperature during the course of reaction. These vectors are found to be nearly constant during the induction period of both “weak” and “strong.” ignition, thus producing constant overall stoichiometric reactions. The subsequent reaction of major reactants associated with “weak” ignition also has a constant overall reaction vector, although, different than that during the induction period. However, the vector describing the reaction of major reactants associated with “strong.” ignition is found never to be constant, but continuously changing beyond the induction period.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 16 (1984), S. 559-578 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The advantages and disadvantages of various methods of parametric sensitivity analysis in chemical kinetic modeling are discussed. Particular attention is given to estimates of computational labor for realistic problems, and quantitative comparisons are made utilizing a 52-reaction, 11-species CO oxidation mechanism. The authors′ CHEMSEN/AIM program compares favorably to other techniques in many circumstances, and provides the additional convenience of accepting input information in familiar chemical notation. This paper also reviews recent developments in theory of sensitivity analysis, relevant to chemical kinetic modeling.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 26 (1994), S. 319-332 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A kinetic model is presented to describe the high temperature (1800 K 〈 T 〈 3000 K) surface oxidation of particulate boron in a hydrocarbon combustion environment. The model includes a homogeneous gas-phase B/O/H/C oxidation mechanism consisting of 19 chemical species and 58 forward and reverse elementary reactions, multi-component gas-phase diffusion, and a heterogeneous surface oxidation mechanism consisting of ‘elementary’ adsorption and desorption reaction steps. Thermochemical and kinetic parameters for the surface reactions are estimated from available experimental data and/or elementary transition state arguments. The kinetic processes are treated using a generalized kinetics code, with embedded sensitivity analysis, for the combustion of a one-dimensional (particle radius), spherical particle. Model results are presented for the oxidation of a 200 μm boron particle in a JP-4/air mixture at ambient temperatures of 1400 K and 2000 K. These results include temperature and gas-phase species profiles as a function of radial distance and particle burning rates. © 1994 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...