ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (3)
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 28 (1988), S. 444-452 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A numerical method has been developed for simulating fully developed multilayer shear flows of non-Newtonian fluids with arbitrary viscosity functions. Poiseuille and combined Poiseuille/Couette flows in both slits arid annuli may be modeled. The method employs a finite difference system where grid points lie on streamlines and move to their correct positions as the solution procedure converges. Interfaces are easily handled as particular stream lines with the equation of motion replaced by a boundary condition. The method is stable for high interface viscosity ratios and readily handles a large number of layers. Many authors have employed power law models to model multi-layer non-Newtonian flows. We find that the power law is sufficient to predict pressure gradients and interface positions in most cases, but gives unrealistically flat velocity profiles, even when truncated at finite viscosity. Results are presented for the Carreau fluid and for the rubber-like liquid with shear thinning via Wagner's strain functional.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 27 (1987), S. 1390-1398 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A numerical method is described for calculating the stress a viscoelastic melt exhibits in a flow, based on approximate kinematics. The method assumes that the kinematics are reasonably close to those of a shear-thinning fluid such as the Carreau model. The strain history of a given flow and the resulting stress are calculated via a tracking method from finite element kinematics. Fullfield flow birefringence experiments were done for lowdensity polyethylene and polystyrene flowing past a thin plate divider in a 1.254-mm planar slit die. By digitally analyzing birefringence photographs of the flow field, the birefringence was measured over two dimensions. These birefringence results are in good agreement with birefringence fields calculated from the numerical simulations and the stress-optical law. The flow fields were most highly oriented in a region surrounding the weld interface just downstream of the plate divider. This orientation relaxed farther downstream, with polystyrene relaxing faster than low-density polyethylene.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 408-415 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A numerical method has been developed that takes the streamline finite difference method for modeling fully developed multilayer polymer flows and adds to it a simple means of accounting for nonisothermal conditions. In industrial practice, temperature control is often used to match material viscosities and, thereby, to avoid flow instabilities. By numerically calculating both viscosity ratios and normal stress difference ratios, the numerical method allows one to judge the relative stability of different flows and to choose an intelligent set of experiments when designing a coextrusion process. The algorithm has been successfully tested for a number of polymer melt constitutive equations in flows where the viscosity jumps no more than two orders of magnitude between fluids. Results for a rheologically well characterized polystyrene low-density polyethylene system and for an industrially interesting high-density polyethylene/Ultem system show that the common practice of matching zero-shear viscosities is overly simplistic when interface shear rate, conduction, normal stress, and flow rate effects are taken into account.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...