ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Physical Organic Chemistry 9 (1996), S. 801-810 
    ISSN: 0894-3230
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The potential energy surface for the thermal isomerization of fulvene to benzene was studied by modified Gaussian-2 (G2M) and the bond additivity-corrected fourth-order perturbation Møller-Plesset (BAC-MP4) methods. Three isomerization pathways were investigated. One involves the intermediate prefulvene by a concerted mechanism, which has a significantly higher barrier. The second, also involving prefulvene and cyclopenta-1,3-dienylcarbene intermediates, has a barrier of 84·0 kcal mol-1. The third, a multi-step pathway, includes bicyclo[3.1.0]hexa-1,3-diene and cyclohexadiene carbene intermediates. The activation energy of the multi-step pathway was calculated to be 74·3 kcal mol-1, which is 7-11 kcal mol-1 higher than the experimental value obtained by a brief very low-pressure pyrolysis (VLPP) study. RRKM calculations were performed on the multi-step pathway in order to determine the rate of isomerization. These theoretical results cast doubt on the validity of the VLPP data. © 1996 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 28 (1996), S. 693-703 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The reactions of N2O with NO and OH radicals have been studied using ab initio molecular orbital theory. The energetics and molecular parameters, calculated by the modified Gaussian-2 method (G2M), have been used to compute the reaction rate constants on the basis of the TST and RRKM theories. The reaction N2O + NO → N2 + NO2 (1) was found to proceed by direct oxygen abstraction and to have a barrier of 47 kcal/mol. The theoretical rate constant, k1 = 8.74 × 10-19 × T2.23 exp (-23,292/T) cm3 molecule-1 s-1, is in close agreement with earlier estimates. The reaction of N2O with OH at low temperatures and atmospheric pressure is slow and dominated by association, resulting in the HONNO intermediate. The calculated rate constant for 300 K ≤ T ≤ 500 K is lower by a few orders than the upper limits previously reported in the literature. At temperatures higher than 1000 K, the N2O + OH reaction is dominated by the N2 + O2H channel, while the HNO + NO channel is slower by 2-3 orders of magnitude. The calculated rate constants at the temperature range of 1000-5000 K for N2O + OH → N2 + O2H (2A) and N2O + OH → HNO + NO (2B) are fitted by the following expressions: $$k_{2A}=2.15\times 10^{-26}\times T^{4.72}\exp(-18,400/T),$$ $$k_{2B}=1.96\times 10^{-28}\times T^{4.33}\exp(-12,623/T),$$ in units of cm3 molecule -1s-1. Both N2O + NO and N2O + OH reactions are confirmed to enhance, albeit inefficiently, the N2O decomposition by reducing its activation energy. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 30 (1998), S. 729-736 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Potential-energy surfaces for various channels of the HNO+NO2 reaction have been studied at the G2M(RCC,MP2) level. The calculations show that direct hydrogen abstraction leading to the NO+cis-HONO products should be the most significant reaction mechanism. Based on TST calculations of the rate constant, this channel is predicted to have an activation energy of 6-7 kcal/mol and an A factor of ca. 10-11 cm3 molecule-1 s-1 at ambient temperature. Direct H-abstraction giving NO+trans-HONO has a high barrier on PES and the formation of trans-HONO would rather occur by the addition/1,3-H shift mechanism via the HN(O)NO2 intermediate or by the secondary isomerization of cis-HONO. The formation of NO+HNO2 can take place by direct hydrogen transfer with the barrier of ca. 3 kcal/mol higher than that for the NO+cis-HONO channel. The formation of HNO2 by oxygen abstraction is predicted to be the least significant reaction channel. The rate constant calculated in the temperature range 300-5000 K for the lowest energy path producing NO+cis-HONO gave rise to\documentclass{article}\pagestyle{empty}\begin{document}$ k_{a}=7.34\cdot 10^{-20}\ \rm{T}^{2.64}\ \rm{exp}(-2034/T)\ \rm{cm}^{3}\ \rm{molecule}^{-1}\ \rm{s}^{-1}. $\end{document}© 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 729-736, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...