ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The permeation of carbon dioxide through polyethylene membranes has been studied at pressures up to 54.4 atm. and at temperatures above and below the critical temperature of the gas (31.0°C.). The permeability coefficient is independent of pressure at the highest experimental temperature (61.0°C.), but becomes increasingly pressure-dependent as the temperature is lowered. The principle of corresponding states can be used to correlate the solubility of both gases and vapors in polyethylene over a wide range of temperatures. This principle can also be invoked to obtain an upper limit for the penetrant pressure above which the permeability coefficient becomes pressure-dependent. The effect of pressure on the permeability, solubility, and diffusivity of gases and vapors in polyethylene is discussed in some detail.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 26 (1980), S. 891-901 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Multistage permeation cascades have been designed for the removal of radioactive krypton and xenon from nuclear reactor atmospheres. These cascades could serve for the decontamination of the atmosphere within a reactor containment dome following a nuclear accident and for other applications of interest to the nuclear industry. The stages of the cascades are assumed to consist of permeator modules using silicone rubber capillaries as separation membranes. All stages are to be operated in a countercurrent mode with shell-side feed.It is shown that it is possible to design an ideal cascade for the separation of multicomponent mixtures by matching the concentrations of a suitable key component in interstage streams that are mixed. This procedure minimizes the cascade volume and power requirement. It is also possible to design a cascade with constant stage cuts in its enriching and stripping sections that approximates the performance of an ideal cascade. The krypton and xenon content of a feed mixture containing about 1 × 10-3 mol% Kr and 1 × 10-2 mol% Xe in air can be lowered by factors of 103 and 108 respectively in a 27-stage permeation cascade. Methods of reducing the number of stages and the effects of irradiation on the membrane performance are also discussed.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 26 (1980), S. 881-890 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of this investigation was to study the separation of krypton and xenon from nuclear reactor atmospheres by selective permeation through silicone rubber capillaries. Effective permeability coefficients for pure krypton xenon, nitrogen, and oxygen were determined between 0 and 40°C and at pressure differences across the capillary walls (Δp) of up to 3.45 × 105 N/m2 (50 psi). The silicone rubber capillaries had an O.D. of 635 μm (0.025 in.) and an I.D. of 305 μm (0.012 in.), and were pressurized externally. The effective permeability coefficients decreased with increasing Δp, due to the elastic deformation of the capillaries, in general agreement with a deformation analysis of thick-walled elastic tubes.Gas separation studies were made with a Kr-Xe-N2-O2 mixture in a permeator containing a bundle of silicone rubber capillaries. The permeator had an effective permeation area of 0.480 m2 (5.165 ft2) at a packing density of 4132 m2m3 permeator volume (1260 ft2/ft3), and was operated in a countercurrent mode. The separation studies were conducted at -10 and 20°C and at three Δp values. The separation achieved in the permeator at Δp's of 1.38 × 105 N/m2 (20 Ib/in.2) and 2.07 × 105 N/m2 (30 Ib/in.2) was in good agreement with that predicted from a theoretical model of a permeation stage with countercurrent flow. At 3.45 × 105 N/m2 (50 Ib/in.2), the separation approached that predicted from a “perfect mixing” model. This behavior probably was due to local collapses of the capillaries at weak spots in their walls, as was evidenced also by a sharp increase in the axial pressure drop inside the capillaries.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 23 (1977), S. 567-578 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The permeation of oxygen, nitrogen, argon, and synthetic air through hollow silicon rubber fibers was studied between 0° and 40°C and at gauge pressures of up to 3.45 × 105 N/m2 (50 lb/in.2 abs). The study was conducted in a permeator module in which the hollow fibers were pressurized externally. Strain measurements with single fibers showed this mode of operation to be preferable to internal pressurization. The gas permeation rates were markedly affected by dimensional changes of the hollow fibers under external pressure. These changes were predicted satisfactorily by a modification of Varga's (1966) deformation analysis of thick-walled elastic tubes. The extent of air separation achieved in the permeator was in agreement with that calculated from theoretical models. It is conjectured that the performance of such a permeator may be improved in certain cases if the fibers are under suitable initial tension.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 32 (1986), S. 1889-1901 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The separation of a He—CH4 mixture containing 9.95 mol% He in permeator modules that incorporate two different types of polymer membranes was studied theoretically and experimentally. The membranes were symmetric dense capillaries of silicone rubber and asymmetric hollow fibers of cellulose triacetate. These membranes exhibit reverse selectivities for He and CH4, silicone rubber being more permeable to CH4, and cellulose triacetate more permeable to He. The simultaneous use of these two types of membranes in a permeator enhances the enrichment and recovery of He compared to the levels obtained with a single-membrane permeator utilizing either membrane alone. The experimental results were found to confirm the theoretical predictions, the agreement being better at the lower stage cuts.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 25 (1979), S. 903-905 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 31 (1985), S. 1167-1177 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Mathematical models have been developed for the separation of binary gas mixtures in permeator modules housing two different types of membranes simultaneously. The membranes are selected so as to exhibit reverse selectivities toward the components of a mixture, i.e., so that one membrane is more permeable to one of the components while the second membrane is more permeable to the other component. The mathematical models describe the membrane separation process for three kinds of flow patterns of the permeated (low pressure) and unpermeated (high pressure) gas streams in the permeator, namely, “perfect mixing,” counter-current flow, and cocurrent flow. Numerical solutions of the models indicate that the extent of separation achievable in a two-membrane permeator can be much higher than in a conventional single-membrane permeator. Also, for given product compositions, the membrane area requirements of the former permeator can be lower than those of the latter. Countercurrent flow is generally the most efficient flow pattern in a two-membrane permeator, and “perfect mixing” is the least efficient one, but the opposite is true under special operating conditions.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An improved cell which permits the measurement of permeabilities of membranes to gases over a wide range of temperatures and gas pressures is described. The measurements are made by the variable volume method, under constant pressure differential across the membrane. The cell lends itself particularly well to routine tests, because it does not require calibration or the use of vacuum techniques. The performance of the cell is discussed, and typical experimental results are presented. A modified permeability cell of the same type for high-pressure studies is also described. Measurements with this apparatus show that the rate of gas permeation obeys, in some cases, a single from of Fick's law, even under pressure differentials across the membrane as high as 800 psi (54 atm.). The paper also compares permeability data obtained by the variable volume and the variable pressure methods. The permeability of 0.002 in.-thick Alathon 15 polyethylene to oxygen and nitrogen was determined between 0 and 50°C. by the two methods, using the same sample of membrane in situ, and the measurements were found to agree within experimental error. Permeabilites of 0.010 in.-thick samples of Alathon 15 polyethylene to nitrogen, oxygen, helium, and carbon dioxide obtained in the same temperature range by the variable volume method were 15-30% higher than the corresponding data determined by the variable pressure method. This discrepancy could be due to the fact that the variable pressure measurements with the thicker membrances may not have been made under true steady-state conditions, although permeabilities were determined from apparently linear sections of permeated gas pressure vs. time curves. A critical re-examination of the methods used to determine permeability constants is suggested.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 29 (1991), S. 341-347 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The solubility of CO2 and CH4 in five polyimides was measured at 35.0°C and at pressures up to 10 atm (147 psia). The concentration of the penetrant gases dissolved in the polymers can be represented satisfactorily as a function of penetrant pressure by the “dual-mode sorption” model. The solubility coefficients for CO2 and CH4, S(CO2) and S(CH4), increase in the polyimide order: \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm PMDA - }4,4'{\rm - }m{\rm - APPS} 〈 6{\rm FDA - }4,4'{\rm - }m{\rm - APPS} 〈 6{\rm FDA - }4,4'{\rm - }p{\rm - APPP} 〈 6{\rm FDA - CDA} 〈 6{\rm FDA - 4,4' - }p{\rm - APPS} $\end{document} The magnitude of the solubility coefficients appears to depend primarily on the intermolecular forces between the penetrant gases and the polymers. The values of these coefficients are greater for the polyimides with larger mean interchain spacings, but no one-to-one correspondence appears to exist in this respect. The lower solubility of CO2 in PMDA-4,4'-m-APPS compared with that in the 6FDA polyimides may be due to the lower “excess” free volume of the former polymer. The ratio S (CO2)/S (CH4) varies relatively little for a variety of PMDA and 6FDA polyimides.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 30 (1992), S. 1185-1185 
    ISSN: 0887-6266
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...