ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (10)
  • solid-phase peptide-synthesis  (2)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 5 (1998), S. 269-276 
    ISSN: 1573-3904
    Keywords: metalloenzymes ; peptide-porphyrins ; solid-phase peptide-synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary New metal-tetraphenylporphyrins and Fmoc-lysine-metalloporphyrin derivatives have been used to prepare peptide-porphyrin and peptide-metalloporphyrin compounds via solid-phase peptide synthesis. A water-soluble peptide, covalently bound to a manganese(III)-porphyrin, has been used as a catalyst to promote the oxidation of ABTS by hydrogen peroxide ort-butylhydroperoxide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of peptide research and therapeutics 5 (1998), S. 269-276 
    ISSN: 1573-3904
    Keywords: metalloenzymes ; peptide-porphyrins ; solid-phase peptide-synthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract New metal-tetraphenylporphyrins and Fmoc-lysine-metalloporphyrin derivatives have been used to prepare peptide-porphyrin and peptide-metalloporphyrin compounds via solid-phase peptide synthesis. A water-soluble peptide, covalently bound to a manganese(III)-porphyrin, has been used as a catalyst to promote the oxidation of ABTS by hydrogen peroxide or t-butylhydroperoxide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1075-2617
    Keywords: Cyclolinopeptide A ; cyclooctapeptides ; NMR ; conformational studies ; restrained molecular dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The cyclic octapeptide cyclo[-Pro1-Pro-Phe-Phe-Ac6c-Ile-ala-Val8-] [C8-Ac6c], containing the Pro1-Pro-Phe-Phe sequence, followed by a bulky helicogenic Cα,α-dialkylated glycine residue Ac6c (1-aminocyclohexane-1-carboxylic acid), and a D-Ala residue at position 7 has been synthesized. This cyclic peptide is a deletion analogue of the naturally occurring cyclic nonapeptide cyclolinopeptide A (CLA). It has been designed with the aim of studying the role that the Ac6c and D-Ala residues play on the conformational behaviour of the whole molecule and their influence on the conformation of the Pro1-Pro-Phe-Phe sequence when compared with cyclolinopeptide A.C8Ac6c has been investigated in chloroform and acetonitrile solutions by 2D NMR techniques. Only one set of sharp signals is observed in both solvents. This evidence strongly supports the hypothesis that only one conformational state exists in the chosen solvents. The interpretation of the experimental data points to the existence for C8-Ac6c of a very rigid structure stabilized by intramolecular hydrogen bonds. The measured NOE effects allow the calculation of internuclear distances, which have been used as restraints in molecular dynamic calculations. The proposed conformation of the molecule shows that the Pro-Pro-Phe segment retains the conformation observed in natural CLA both in solution and in the solid state and that the Ac6c residue indeed reinforces the ring rigidity not permitting the formation of any appropriate cavity in which inorganic cations could be complexed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1075-2617
    Keywords: Structure of amatoxin analogues ; constrained bicyclopeptides ; NMR ; molecular dynamics ; Chemistry ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The evaluation of peptide structures in solution is made feasible by the combined use of two-dimensional NMR in the laboratory (NOESY) and rotating frames (ROESY), and by the use of molecular dynamics calculations. The present paper describes how both the NMR method and molecular dynamics calculations were applied to very rigid synthetic bicyclic peptides that are analogues of natural amatoxins. The NMR theory, which allows the estimate of interatomic distances between interacting nuclei, is briefly discussed. The experimental data were compared with those of known solid-state structures. Three amatoxin analogues have been examined. Of these, one is biologically active (S-deoxo γ[R] OH-Ile3-amaninamide) and its structure in the solid state has recently been worked out. The second and third analogues (S-deoxo-Ile3 -Ala5-amaninamide and S-deoxo-D-Ile3 -amaninamide, respectively) are inactive and their solid-state structures are unknown. The data presented confirm the authors' previous hypothesis that lack of biological activity of S-deoxo-Ile3-Ala5- amaninamide is due to the masking of the tryptophan ring by the methyl group of L-Ala and not to massive conformational changes of the analogue.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1434-193X
    Keywords: Receptor selectivity ; Agonist activity ; Distance geometry ; Conformation ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: To identify the peptide conformation that is preferentially recognized by the receptor, we have synthetized by solid-phase method a series of deltorphin I analogs with increasing selectivity for δ- and μ-opioid receptor. Structure-selectivity relationship of these peptides were evaluated on the basis of receptor-binding properties and conformational features, computed by two-dimensional NMR spectra and distance-geometry techniques. These compounds in solution are present with a large number of conformers with no defined secondary structural elements. The analysis of the average properties of these compounds indicate the presence of some distinct conformational preferences that can be related to the observed opioid receptor selectivities. Selectivity for the δ- and μ-opioid receptors can be ascribed to the spatial arrangement of the aromatic moieties. In addition, substitutions in position 2 and 4 are important for the correct arrangement and must be taken into account in the design of δ-opioid receptor-selective ligands.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Irregular protein secondary structures are believed to be important structural domains involved in molecular recognition processes between proteins, in interactions between peptide substrates and receptors, and in protein folding. In these respects tight turns are being studied in detail. They also represent template structures for the design of new molecules such as drugs, pesticides, or antigens. Isolated α-turns, not participating in α-helical structures, have received little attention due to the overwhelming presence of other types of tight turns in peptide and protein structures. The growing number of protein X-ray structures allowed us to undertake a systematic search into the Protein Data Bank of this uncharacterized protein secondary structure. A classification of isolated α-turns into different types, based on conformational similarity, is reported here. A preliminary analysis on the occurrence of some particular amino acids in certain positions of the turned structure is also presented. © 1996 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In the present paper we describe the solution nmr structural analysis and restrained molecular dynamic simulation of the cyclic pentapeptide cyclo-(Pro-Phe-Phe-β-Ala-β-Ala). The conformational analysis carried out in CD3CN and dimethylsulfoxide (DMSO) solutions by nmr spectroscopy was based on interproton distances derived from rotating frame nuclear Overhauser effect spectroscopy spectra and homonuclear coupling constants. A restrained molecular dynamic simulation in vacuo was also performed to build refined molecular models. The molecule is present in both solvent systems as two slowly interconverting conformers, characterized by a cis-trans isomerism around the β-Ala5-Pro1 peptide bond. In CD3CN solution, the conformer with a cis peptide bond is quite similar to that observed in the solid state, while the conformer containing all trans peptide bonds is characterized by an intramolecular hydrogen bond stabilizing a C10- and a C13-ring structure. In DMSO solution, the trans isomer is partly similar to that observed in CD3CN solution while the cis isomer is different from that observed in the solid state. The effect of the solvent in stabilizing different conformations was also investigated in DMSO-CD3CN solvent mixtures. © 1996 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In the present paper we describe the synthesis, purification, and single crystal x-ray analysis of the cyclic pentapeptide cyclo-(Pro-Phe-Phe-β-Ala-β-Ala). This compound crystallizes in the orthorhombic space group P212121 from methanol and adopts in the solid state an unusual conformation characterized by a cis β-Ala5-Pro1 peptide bond and by an intramolecular hydrogen bond stabilizing a C11- and a C12-ring structure. The C11, structure contains the Phe3 and the β-Ala4 at the corner position of the turn; it is the first observation of a type II β-turn enlargement due to the insertion of an extra methylene group of the β-alanine residue. The rest of the molecule participates in a newly characterized C12-ring structure, which incorporates a β-Ala residue at position i of the turn. © 1996 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and solution structural characterization by nmr spectroscopy, combined with restrained molecular dynamic simulations, of the cyclic hexapeptide cyclo-(Pro-Phe-β-Ala-Phe-Phe-β-Ala). The peptide was synthesized by classical solution methods and the cyclization of the free hexapeptide was accomplished in good yields in diluted methylenechloride solution using N, N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from methanol/ethyl acetate. The molecule adopts in the solid state a conformation characterized by cis β-Ala6-Pro1 peptide bond. The α-amino acid residues are at the corner positions of turned structures. The Pro1-Phe2 segment is incorporated in a pseudo type I β-turn, while Phe4-Phe5 is in a typical type I β-turn. Assignment of all 1H and 13C resonances was achieved by homo- and heteronuclear two-dimensional techniques in dimethylsulfoxide (DMSO) solutions. The conformational analysis was based on inter-proton distances derived from rotating frame nuclear Overhauser effect spectroscopy spectra and homonuclear coupling constants. Restrained molecular dynamic simulation in vacuo was also performed to built refined molecular models. The molecule is present in DMSO solution as two slowly interconverting conformers, characterized by a cis-tran isomerism around the β-Ala6-Pro1 peptide bond. This work confirms our expectations on the low propensity of β-alanyl residues to be positioned at the corners of turned structure. © 1994 John Wiley & Sons, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and nmr solution characterization, combined with restrained molecular dynamic simulations, of the cyclic hexapeptide cyclo-(L-Pro-L-Phe-β-Ala)2. The peptide was synthesized by classical solution methods and the cyclization of the free hexapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from methanol-dichloro-methane solution. The two identical halves of the molecule adopt in the solid state two different conformations. One β-Ala-L-Pro peptide bond is trans, while the second is cis. The molecule is present in dimethylsulfoxide d6 solutions as a mixture of conformational families. One of these corresponds to a C2 symmetrical molecule with both β-Ala-Pro cis peptide bonds, while the second major conformation is very similar to that observed in the solid state. All Pro-Phe segments, both in the solid state and the symmetrical and unsym-metrical solution conformations, display φ,ψ angles close to that of position i + 1 and i + 2 of type II β-turns. In addition, the segments preceeded by a trans β-Ala-Pro peptide bond are characterized by a typical i ← i + 3 hydrogen bond, which is absent in the conformer containing a cis β-Ala-Pro peptide bond. The latter conformation corresponds to a new structural domain we define as the “pseudo type II β-turn.” © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...