ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 58 (1998), S. 380-386 
    ISSN: 0006-3592
    Keywords: reverse micelles ; cutinase ; deactivation ; conformational changes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Deactivation data and fluorescence intensity changes were used to probe functional and structural stability of cutinase in reverse micelles. A fast deactivation of cutinase in anionic (AOT) reverse micelles occurs due to a reversible denaturation process. The deactivation and denaturation of cutinase is slower in small cationic (CTAB/1-hexanol) reverse micelles and does not occur when the size of the cationic reverse micellar water-pool is larger than cutinase. In both systems, activity loss and denaturation are coupled processes showing the same trend with time. Denaturation is probably caused by the interaction between the enzyme and the surfactant interface of the reversed micelle. When the size of the empty reversed micelle water-pool is smaller than cutinase (at W0 5, with W0 being the water:surfactant concentration ratio) a three-state model describes denaturation and deactivation with an intermediate conformational state existing on the path from native to denaturated cutinase. This intermediate was clearly detected by an increase in activity and shows only minor conformational changes relative to the native state. At W0 20, the size of the empty water-pool was larger than cutinase and the data was well described by a two-state model for both anionic and cationic reverse micelles. For AOT reverse micelles at W0 20, the intermediate state became a transient state and the deactivation and denaturation were described by a two-state model in which only native and denaturated cutinase were present. For CTAB/1-hexanol reverse micelles at W0 20, the native cutinase was in equilibrium with an intermediate state, which did not suffer denaturation. 1-Hexanol showed a stabilizing effect on cutinase in reverse micelles, contributing to the higher stabilities observed in the cationic CTAB/1-hexanol reverse micelles. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 58:380-386, 1998.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-02
    Description: The Transport Collaboration, consisting of researchers from institutions in France, Germany, Italy, and the USA, has established a program to make new measurements of nuclear interaction cross sections for heavy projectiles (Z greater than or equal to 2) in targets of liquid H2, He and heavier materials. Such cross sections directly affect calculations of galactic and solar cosmic ray transport through matter and are needed for accurate radiation hazard assessment. To date, the collaboration has obtained data using the Lawrence Berkeley Laboratory Bevalac HISS facility with 20 projectiles from He-4 to Ni-58 in the energy range 393-910 MeV/nucleon. Preliminary results from the analysis of these data are presented here and compared to other measurements and to cross section prediction formulae.
    Keywords: NUCLEAR AND HIGH-ENERGY PHYSICS
    Type: Life Sciences and Space Research 25 (2) Radiation Biology: Topical Meeting of the COSPAR Interdisciplinary Scientific Commission F of the COSPAR 29th Plenary Meeting, Washington, DC, Aug. 28-Sep. 5, 1 (ISSN 0273-1177); 14; 10; p. 825-830
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...