ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (2)
  • RNase A  (1)
  • 1985-1989  (3)
  • 1
    ISSN: 1573-4943
    Keywords: RNase A ; protein fragment ; disulfide-loop formation ; native-like conformation ; protein folding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A 30-residue peptide was obtained from ribonuclease A by chemical cleavage with cyanogen bromide, subsequent sulfitolysis with concomitant S-sulfonation, and finally enzymatic cleavage withStaphylococcus aureus protease. The peptide was converted to the free thiol form by reductive cleavage of the S-sulfo-protecting groups withd,l-dithiothreitol. This peptide consisted of residues 50–79 of the native sequence of ribonuclease A, with the exception that methionine-79 had been converted to homoserine. Included in this sequence are residues cysteine-65 and cysteine-72, which form a disulfide bond in the native enzyme, as well as cysteine-58. This molecule may form one of three possible intramolecular disulfide bonds upon thiol oxidation, viz. one loop of 15 and 2 of 8 residues each. These isomeric peptides were prepared by oxidation with cystamine, 2-aminoethanethiolation of residual thiols, and fractionation by reverse-phase high-performance liquid chromatography. Disulfide pairings were established by mapping the tryptic fragments and confirming their composition by amino acid analysis. After protracted incubation under oxidizing conditions at 25.0°C andp H 8.0, the 26-member ring incorporating the native disulfide bond between residues 65 and 72 is the dominant product. Assuming that equilibrium is established, we infer that local interactions in the sequence of ribonuclease A significantly stabilize the native 8-residue disulfide loop with respect to the non-native 8-residue loop (ΔG°=−1.1±0.1 kcal mole−1). The implications of this observation for the oxidative folding of the intact protein are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 26 (1987), S. 651-671 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A method is developed to extract the entropy of polypeptides and proteins from samples of conformations. It is based on techniques suggested previously by Meirovitch, and has the advantage that it can be applied not only to states in which the molecule undergoes harmonic or quasiharmonic conformational fluctuations, but also to the random coil, as well as to mixtures of these extreme states. In order to confine the search to a region of conformational space corresponding to a stable state, the transition probabilities are determined not by “looking to the future,” as in the previous method [H. Meirovitch and H. A. Scheraga (1986) J. Chem. Phys. 84, 6369-6375], but by analyzing the previous steps in the generation of the chain. The method is applied to a model of decaglycine with rigid geometry, using the potential energy function ECEPP (Empirical Conformational Energy Program for Peptides). The model is simulated with the Metropolis Monte Carlo method to generate samples of conformations in the α-helical and hairpin regions, respectively, at T = 100 K. For the α-helix, the four dihedral angles of the N- and C-terminal residues are found to undergo full rotational variation. The results show that the α-helix is a more stable structure than the hairpin. Both its Helmholtz free energy F and energy E are lower than those of the hairpin by ΔF ∼ 0.4 and ΔE ∼ 0.3 kcal/mole/residue, respectively. It should be noted that the contribution of the entropy ΔS to ΔF is significant (TΔS ∼ 0.1 kcal/mole/residue). Also, the entropy of the α-helix is found to be larger than that of the hairpin. This is a result of the extra entropy arising from the rotational freedom about the four terminal single bonds of the α-helix.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Time-dependent fluorescence measurements have been used to determine the distribution of distances between probes attached to residues 1 and (49 + 53) of bovine pancreatic ribonuclease A in the native, denatured, and reduced-denatured states. Measurements were made on donor and on doubly labeled (donor + acceptor) protein in 50% aqueous glycerol solutions at -30°C and at room temperature. The fluorescence-decay curves were used to compute distribution functions for the interprobe distances. The native protein has a narrow distribution of interprobe distances at -30°C (high-viscosity medium); this distribution is narrower at room temperature (low-viscosity medium), due primarily to the dynamic flexibility of the probes. Denaturation by 6M guanidine hydrochloride leads to a wider distribution of distances at -30°C, with a shift of the distribution curve to larger distances, because of the increased disorder of the protein. Reduction of the disulfide bonds by dithiothreitol leads to further decreases in transfer efficiency (a unique distribution curve for the reduced protein was not obtained because of the low transfer efficiency). Both the denatured and reduced-denatured species have average interprobe distances of about 60 Å, compared to 36 Å for the native protein. Reduction of the solvent viscosity leads to nearly monoexponential decay of the donor fluorescence in the doubly labeled derivative. This is interpreted as a manifestation of fast local Brownian motions. It appears that large-scale segmental motions do not take place in the denatured protein within the excited-state lifetime of the donor (ca. 8 ns). The above results indicate that reduced-denatured ribonuclease A has residual structure that limits segmental Brownian motion in the N-terminal segment.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...