ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemical oceanography  (2)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution April, 1976
    Description: The marine geochemical cycles of iron, copper, nickel, and cadmium were studied in order to provide a basis for oceanographic models for trace metals. Copper, nickel, and cadmium can be determined in a 100 ml seawater sample using cobalt pyrrolidine dithioacarbamate chelate coprecipitation and graphite atomizer atomic absorption spectrometry. Concentration ranges likely to be encountered and estimated (1δ) analytical precisions are copper, 1 to 6 nanomole/kg (±0.1); nickel, 3 to 12 nanomole/kg (±0.3); and cadmium, 0. 0 to 1.1 nanomole/kg (±0.1). The technique may be applied to freshwater samples with slight modification. A survey of several east coast U. S. estuaries established that an iron removal process occurs commonly when rivers mix with seawater. Laboratory mixing experiments using water from the Merrimack River (Mass.) and the Mullica River (New Jersey) demonstrated that rapid iron precipitation occurs as negatively-charged iron-organic colloids react with seawater cations and coagulate. This phenomenom was modeled using a synthetic, organic-stabilized colloidal suspension of goethite. The generality of the mechanism suggests that the world-average net river input of iron to the oceans is less than 1 μmole/kg of river water, an order of magnitude below previous estimates. Profiles of cadmium were obtained for 3 GEOSECS stations in the Pacific Ocean. Cadmium shows a consistent linear correlation with phosphate which demonstrates that cadmium is regenerated in a shallow cycle within the water column. The water column correlation is consistent with data on cadmium in marine organisms. Cadmium is enriched in upwelling regions which explains reports of cadmium enrichment in plankton from the Baja California upwelling region. Copper and nickel measurements have been made for three profiles from the Pacific Ocean. Observed copper concentrations range from 1 to 6 nanomole/kg; nickel varies from 3 to 12 nanomole/kg. Copper and nickel are removed from surface waters by uptake into organisms. As noted previously, nickel is regenerated partially in a shallow cycle (like P) and also in a deep cycle (like Ba). Copper is regenerated from biological debris at the bottom but is also scavenged from the mid and deep water column by an undetermined mechanism. The scavenging residence time is 1400 years. An estimate for the continental input of Ni, 7 nanomole/kg of river water, and Cu, 18 nanomole/kg of river water, was derived from measurements in the Amazon estuary. The oceanic residence times for nickel and copper are about 10,000 years. Evidence available on the uptake laws for trace metals by plankton suggests that a consistent relationship between the uptake law and the depth of regeneration may apply.
    Description: Money in support of this research came at various times from the ONR, MIT UROP office, and a grant from the Doherty Foundation.
    Keywords: Geochemistry ; Chemical oceanography ; Trace elements in water ; Chain (Ship : 1958-) Cruise CH115
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: 4112508 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Chemistry 173 (2015): 125-135, doi:10.1016/j.marchem.2014.09.002.
    Description: The size partitioning of dissolved iron and organic iron-binding ligands into soluble and colloidal phases was investigated in the upper 150 m of two stations along the GA03 U.S. GEOTRACES North Atlantic transect. The size fractionation was completed using cross-flow filtration methods, followed by analysis by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) for iron and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) for iron-binding ligands. On average, 80% of the 0.1-0.65 nM dissolved iron (〈0.2 μm) was partitioned into the colloidal iron (cFe) size fraction (10 kDa 〈 cFe 〈 0.2 μm), as expected for areas of the ocean underlying a dust plume. The 1.3-2.0 nM strong organic iron-binding ligands, however, overwhelmingly (75-77%) fell into the soluble size fraction (〈10 kDa). As a result, modeling the dissolved iron size fractionation at equilibrium using the observed ligand partitioning did not accurately predict the iron partitioning into colloidal and soluble pools. This suggests that either a portion of colloidal ligands are missed by current electrochemical methods because they react with iron more slowly than the equilibration time of our CLE-ACSV method, or part of the observed colloidal iron is actually inorganic in composition and thus cannot be predicted by our model of unbound iron-binding ligands. This potentially contradicts the prevailing view that greater than 99% of dissolved iron in the ocean is organically complexed. Untangling the chemical form of iron in the upper ocean has important implications for surface ocean biogeochemistry and may affect iron uptake by phytoplankton.
    Description: J.N. Fitzsimmons was funded by a National Science Foundation Graduate Research Fellowship (NSF Award #0645960). Research funding was provided by the National Science Foundation (OCE #0926204 and OCE #0926197) and the Center for Microbial Oceanography: Research and Education (NSF-OIA Award #EF-0424599) to E.A. Boyle. R.M. Bundy was partially funded by NSF OCE-0550302 and NSF OCE-1233733 to K.A. Barbeau and an NSF-GK12 graduate fellowship.
    Keywords: Iron ; Iron ligands ; CLE-ACSV ; Colloids ; Ultrafiltration ; Trace metals ; GEOTRACES ; North Atlantic Ocean ; Chemical oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...