ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 19 (1973), S. 1036-1039 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 25 (1979), S. 737-759 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The main problems which are relevant to a fundamental understanding of deep bed filtration are the nature of and the conditions leading to the retention of particles throughout a filter bed, the change of the filter media structure due to deposition, and its effect on filter performance. The purpose of this review is to discuss in a systematic manner the more recent advances in the investigation of all these problems. A reasonably complete understanding of the pertinent phenomena is essential for the establishment of a comprehensive deep bed filtration theory which can be used as a basis of rational design.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 26 (1980), S. 443-454 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: When an aerocolloidal suspension flows through a fibrous filter, particles deposit on the fibers and form dendrites. Similar phenomena are observed with collectors other than fibers, provided that the characteristic dimension of the collector does not exceed that of the particles by more than one to two orders of magnitude. This deposition pattern leads to marked increases in capture efficiency and pressure drop, as particles accumulate within the filter. In previous publications, theoretical models of this process were developed for the cases of deposition by interception alone and of deposition by combined inertial impaction and interception. Consequently, those works apply to aerosol particles with diameters of 1 μm or larger. Here we extend the model to the case of submicron particles, where the main transport mechanism is Brownian diffusion. To keep things specific, we consider fine fibers as collectors, but the model can be easily converted to other geometries. We present solutions for the cases of nonslip flow around the fiber and nonslip, slip and free molecular flow around particles. Unlike deposition by inertial impaction and/or interception, convective Brownian diffusion forms dendrites over the entire fiber surface.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 42 (1996), S. 369-382 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A computer-aided simulator of steady-state two-phase flow in consolidated porous media is developed. The porous medium is modeled as a 3-D pore network of suitably shaped and randomly sized unit cells of the constricted-tube type. The problem of two-phase flow is solved using the network approach. The wetting phase saturation, the viscosity ratio, the capillary number, and the probability of coalescence between two colliding ganglia are changed systematically, whereas the geometrical and topological characteristics of the porous medium and wettability (dynamic contact angles) are kept constant. In the range of the parameter values investigated, the flow behavior observed is ganglion population dynamics (intrinsically unsteady, but giving a time-averaged steady state). The mean ganglion size and fraction of the nonwetting phase in the form of stranded ganglia are studied as functions of the main dimensionless parameters. Fractional flows and relative permeabilities are determined and correlated with flow phenomena at pore level. Effects of the wetting phase saturation, the viscosity ratio, the capillary number, and the coalescence factor on relative permeabilities are examined.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 25 (1979), S. 725-730 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 26 (1980), S. 430-443 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A model is formulated in order to study the transient behavior of oil ganglion populations during immiscible displacement in oil recovery processes. The model is composed of three components: a suitable model for granular porous media; a stochastic simulation method capable of predicting the expected fate (mobilization, breakup, stranding) of solitary oil ganglia moving through granular porous media; and two coupled ganglion population balance equations, one applying to moving ganglia and the other to stranded ones. The porous medium model consists of a regular network of randomly sized unit cells of the constricted tube type. Based on this model and a mobilization-breakup criterion, computer aided simulations provide probabilistic information concerning the fate of solitary oil ganglia. Such information is required in the ganglion population balance equations, the solution of which delineates the conditions under which oil bank formation suceeds or fails. Successful oil bank formation depends on the outcome of the competition between the process of oil ganglion deterioration through breakup and stranding on one hand and the process of oil ganglion collision and coalescence on the other. The parameters entering the system of population balances are initial ganglion number concentration, average ganglion velocity, ganglion dispersion coefficients, ganglion stranding coefficient, ganglion breakup coefficient and probability of coalescence given a collision. These parameters are, in turn, functions of the porous medium geometry, capillary number, ganglion size distribution, flood velocity, oil saturation and flood composition.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 19 (1973), S. 58-67 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A new model for porous media comprised of monosized, or nearly monosized grains, is developed. In applying this model to a packed bed, the bed is assumed to consist of a series of statistically identical unit bed elements each of which in turn consists of a number of unit cells connected in parallel. Each unit cell resembles a piece of constricted tube with dimensions which are random variables. The problem of flow through each unit cell is reduced, subject to reasonable assumptions, to the determination of the flow in an infinitely long periodically constricted tube. The solution of this flow problem is given in a companion publication. This model, together with the solution of the flow through it, can be used for the modeling of processes which take place in the void space of a bed.As a preliminary test, theoretical friction factor values, based on the proposed model, were compared with experimental ones for two different beds and found to be in good agreement even in the region of high Reynolds numbers where the nonlinear inertia terms are significant.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A numerical method for the solution of the problem of steady state, incompressible Newtonian flow through periodically constricted tubes is developed. All terms of the Navier-Stokes equation are retained, including the nonlinear inertia terms.Sample calculations for a uniform periodically constricted tube, the geometry of which is connected with the modeling of a packed bed of sand are given, including streamlines, axial and radial velocity profiles, pressure profiles, and the dimensionless pressure drop versus Reynolds number relation. The effect of some geometric characteristics of periodically constricted tubes on their friction factor is investigated numerically, and comparison of some existing experimental data with calculated ones is made.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 23 (1977), S. 192-202 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: When a suspension of fine solid particles in a gaseous medium flows through a fibrous filter, particles deposit on the fibers forming chainlike agglomerates known as dendrites. This deposition pattern is responsible for the intrinsically transient behavior of the filter, leading to drastic increases of the filtration efficiency and of the pressure drop. Related phenomena are observed when aerosols flow through other types of porous media (for example, granular beds), or next to duct walls, around immersed objects, etc. A theoretical model of the particle dendrite growth was proposed recently by Payatakes and Tien. Here a revised and generalized version of that model is developed. The following major revisions are made: allowance is made for collisions with a particle in a given dendrite layer that lead to retension in the same layer, radial as well as angular contributions to deposition are considered, and the dendrite layer adjacent to the collector is allowed to contain more than one particle. These changes lead to a substantially more realistic theoretical model. Expressions for the transient behavior of a filter of differential thickness are obtained, based entirely on first principles. These, as it has been shown in a previous publication, can be used to predict the dynamic behavior of a macroscopic fibrous filter. The use and behavior of this model is demonstrated in the simple case of deposition by pure interception. The present treatment of deposition by pure interception is more rigorous than and supersedes that adopted in previous works.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...