ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 21 (1975), S. 400-402 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 1653-1666 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Visual, video, pressure, and conductance techniques were used to study time-varying disturbances in cocurrent flow in packed beds with vertical and horizontal columns. It is found that the trickle-pulse transition, as defined in previous studies, corresponds to conditions where traveling disturbances finaly become measurable, not the conditions at which infinitesimal disturbances begin to grow. Observations demonstrate that even if the liquid and gas are uniformly distributed initially, segregated, vertical flowing regions with higher or lower than average liquid holdup form after a short distance. Horizontal packed bed experiments, designed to study how regions of differing liquid holdup interact, indicate that the first type of disturbance is infiltration of gas into the liquid region. A simple model suggests that infiltration occurs if the pressure drop exceeds a value necessary to push gas through liquid-filled pores. Once infiltration is significant enough to form a third “bubbly” phase, traveling wave instabilities form and grow into pulses if sufficient column length is available. A three-layer Kelving-Helmholtz stability model is used to interpret the growth of disturbances in horizontal flows. Video obeservations of small-scale events in the bed failed to detect significant correlations between different regions. Thus it should be possible to describe flow behaviour in these systems with volum-averaged equations, as long as the presence of segregated regions is considered. Column diameter or thickness significantly affects the frequency of disturbances.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 35 (1995), S. 387-394 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Rigid, closed-cell, polyurethane foam consists of interconnected polyurethane plates that form cells. When this foam is compressed, it exhibits an initial elastic regime, which is followed by a plateau regime in which the load required to compress the foam remains nearly constant. In the plateau regime, cell walls are damaged and large permanent volume changes are generated. As additional load is applied, cell walls are compressed against neighboring cell walls, and the stiffness of the foam increases and approaches a value equal to that of solid poyurethane. When the foam is loaded in tension, the cell walls are damaged and the foam fractures. A constitutive theory for rigid polyurethane foam has been developed. This theory is based on a decomposition of the foam in two parts: a skeleton and a nonlinear elastic continuum in parallel. The skeleton accounts for the foam behavior in the elastic and plateau regimes and is described using a coupled plasticity with continuum damage theory. The nonlinear elastic continuum accounts for the lock-up of the foam due to internal gas pressure and cell wall interactions. This new constitutive theory has been implemented in both static and dynamic finite element codes. Numerical simulations performed using the new constitutive theory are presented.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...