ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 37 (1991), S. 597-606 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The tray hydrodynamics were determined for a system containing water and kerosene as immiscible liquids. Plates with hole diameters ranging from 3.18 to 12.70 mm were used in a 44.5-cm2 perspex air-water-kerosene simulator. Experiments were also carried out in a 50-mm-ID column using different depths of oil and water mixtures to study the drop and bubble mechanisms. A spray-to-bubble transition occurred for the two liquid-phase system experiments. The liquid holdup at the transition increased directly with gas velocity and hole diameter, and decreased with increasing free area. At the same hole velocity, the presence of two liquid phases caused the transition to occur at different liquid holdups than for the single pure liquid. Two different modes of coalescence were observed in the small column work. New correlations have been proposed for the liquid holdup at the transition which allow for the presence of two liquid phases.
    Additional Material: 21 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 266-268 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 33 (1993), S. 437-444 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The elastic deformation of polymer macromolecules in a shear field is used as the basis for quantitative predictions of viscoelastic flow effects in a polymer melt. Non-Newtonian viscosity, capillary end correction factor, maximum die swell, and die swell profile of a polymer melt are predicted by the model. All these effects can be reduced to generic master curves, which are independent of polymer type. Macromolecular deformation also influences the brittle failure strength of a processed polymer glass. The model gives simple and accurate estimates of practically important processing effects, and uses fitting parameters with the clear physical identity of viscoelastic constants, which follow well established trends with respect to changes in polymer composition or processing conditions.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 34 (1994), S. 1-2 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 1870-1875 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Results on solution-blended poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) blends are reported. Dichloroacetic acid was used as the cosolvent for blending. PEEK and PEI are confirmed to be miscible in the melt. The glass transition, Tg, behavior obeys the simple Fox equation or the Gordon-Taylor equation with the adjustable coefficient k = 0.86. This agrees with prior data on melt-blended PEEK/PEI blends. The Tg width of the amorphous PEEK/PEI blends was found to be broader than that of the pure components. The maximum broadening is about 10°C. The specific volume of the amorphous PEEK/PEI blends shows a slight negative deviation from linearity, indicating favorable interaction between PEEK and PEI. The spherulitic growth and resultant blend morphology at 270°C were studied by a cross-polarized optical microscope. The radial growth rate of PEEK spherulites formed from the miscible melt at 270°C decreases from 3.04 μm/min for PEEK/PEI 90/10 blend to 0.77 μm/min for PEEK/PEI 70/30 blend. The decrease in crystalization rate of PEEK from PEEK/PEI blends is attributable to the increase in blend Tg. A linear growth was observed for PEEK spherulites formed from miscible melt at 270°C in the early growth stage. The spherulitic growth deviated from linearity in the late stage of growth. PEEK spherulites formed from the miscible PEEK/PEI melt at 270°C are essentially volume-filling. The branches of the spherulites become more clear for PEEK spherulites formed from the blend than that formed from pure PEEK melt.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...