ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; IMAGES; International Marine Global Change Study; MARUM  (1)
  • Late Quaternary
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Gibbons, Fern T; Oppo, Delia W; Mohtadi, Mahyar; Rosenthal, Yair; Cheng, Jun; Liu, Zhengyu; Linsley, Braddock K (2014): Deglacial d18O and hydrologic variability in the tropical Pacific and Indian Oceans. Earth and Planetary Science Letters, 387, 240-251, https://doi.org/10.1016/j.epsl.2013.11.032
    Publication Date: 2023-03-03
    Description: Evidence from geologic archives suggests that there were large changes in the tropical hydrologic cycle associated with the two prominent northern hemisphere deglacial cooling events, Heinrich Stadial 1 (HS1; ~19 to 15 kyr BP; kyr BP = 1000 yr before present) and the Younger Dryas (~12.9 to 11.7 kyr BP). These hydrologic shifts have been alternatively attributed to high and low latitude origin. Here, we present a new record of hydrologic variability based on planktic foraminifera-derived d18O of seawater (d18Osw) estimates from a sediment core from the tropical Eastern Indian Ocean, and using 12 additional d18Osw records, construct a single record of the dominant mode of tropical Eastern Equatorial Pacific and Indo-Pacific Warm Pool (IPWP) hydrologic variability. We show that deglacial hydrologic shifts parallel variations in the reconstructed interhemispheric temperature gradient, suggesting a strong response to variations in the Atlantic Meridional Overturning Circulation and the attendant heat redistribution. A transient model simulation of the last deglaciation suggests that hydrologic changes, including a southward shift in the Intertropical Convergence Zone (ITCZ) which likely occurred during these northern hemisphere cold events, coupled with oceanic advection and mixing, resulted in increased salinity in the Indonesian region of the IPWP and the eastern tropical Pacific, which is recorded by the d18Osw proxy. Based on our observations and modeling results we suggest the interhemispheric temperature gradient directly controls the tropical hydrologic cycle on these time scales, which in turn mediates poleward atmospheric heat transport.
    Keywords: Center for Marine Environmental Sciences; IMAGES; International Marine Global Change Study; MARUM
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Palaeogeography, Palaeoclimatology, Palaeoecology 415 (2014): 3-13, doi:10.1016/j.palaeo.2014.05.030.
    Description: Reconstructions of surface paleoceanographic conditions of the western equatorial Atlantic and past climates of the adjacent Northeast Brazilian (the "Nordeste") continental margin were undertaken by analyzing sediments from a piston core and associated gravity and box cores recovered from 3107 meter water depth at 0° 20’ N on the equatorial Brazilian continental slope. The record is dated by radiocarbon analysis and oxygen isotopic stratigraphy of planktonic foraminifers and spans from near- modern to approximately 110 Ka. High-resolution XRF analysis provides insight into the paleoclimate history of the Nordeste during the last glacial interval. Several large-amplitude and abrupt peaks are observed in the time series of Ti/Ca and are usually accompanied by peaks of Fe/K. Together these record periods of increased precipitation and intense weathering on the adjacent continent and increased terrestrial sediment discharge from Nordeste rivers into the Atlantic. Within the limits of dating accuracy, most Ti/Ca peaks correlate with Heinrich events in the North Atlantic. This record thus corroborates, and extends back in time, the previous record of Arz et al (1998) determined on sediment cores from farther southeast along the Nordeste margin. Stable oxygen isotopic analysis and Mg/Ca paleothermometry on the near- surface-dwelling planktonic foraminiferal species Globierinoides ruber find that mean sea-surface temperature (SST) during glacial time (20 to 55 Ka, n = 97) was 23.89 ± 0.79 °C and the mean SST during the late Holocene (0 to 5 Ka, n = 14) was 26.89 ± 0.33 °C. SSTs were 0.5 to 2 °C higher and inferred sea-surface salinities were lower during most of the periods of elevated Ti/Ca, thus, as observed in previous studies, the western equatorial Atlantic was warm (at least locally) and the adjacent southern tropical continent was wet at the same time that the high-latitude North Atlantic was cold. Using the SYNTRACE-CCSM3 fully coupled climate model with transient forcing for the period 22 Ka to present, we find that decreased transport of the North Brazil Current co-occurs with reduced Atlantic meridional overturning circulation, and colder-than-normal SSTs in the North Atlantic region. These simulated conditions are invariably associated with significantly increased precipitation in the Nordeste region.
    Description: Funding for the cruise and post-cruise science was provided to PAB by NSF-OCE-0823650.
    Keywords: North Brazil Current ; Amazon margin ; Late Quaternary ; Heinrich events
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...