ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Uniform resource locator/link to file  (3)
Collection
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Varma, Vidya; Prange, Matthias; Lamy, Frank; Merkel, Ute; Schulz, Michael (2011): Solar-forced shifts of the Southern Hemisphere Westerlies during the Holocene. Climate of the Past, 7, 339-347, https://doi.org/10.5194/cp-7-339-2011
    Publication Date: 2023-10-28
    Description: The Southern Hemisphere Westerly Winds (SWW) constitute an important zonal circulation that influences large-scale precipitation patterns and ocean circulation. Variations in their intensity and latitudinal position have been suggested to exert a strong influence on the CO2 budget in the Southern Ocean, thus making them a potential factor affecting the global climate. The possible influence of solar forcing on SWW variability during the Holocene is addressed. Solar sensitivity experiments with a comprehensive global climate model (CCSM3) are carried out to study the response of SWW to solar variability. In addition, It is shown that a high-resolution iron record from the Chilean continental slope (41° S), which is interpreted to reflect changes in the position of the SWW, is significantly correlated with reconstructed solar activity during the past 3000 years. Taken together, the proxy and model results suggest that centennial-scale periods of lower (higher) solar activity caused equatorward (southward) shifts of the annual mean SWW.
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 36 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Varma, Vidya; Prange, Matthias; Merkel, Ute; Kleinen, Thomas; Lohmann, Gerrit; Pfeiffer, Madlene; Renssen, Hans; Wagner, Axel; Wagner, Sebastian; Schulz, Michael (2012): Holocene evolution of the Southern Hemisphere westerly winds in transient simulations with global climate models. Climate of the Past, 8(2), 391-402, https://doi.org/10.5194/cp-8-391-2012
    Publication Date: 2023-10-28
    Description: The Southern Hemisphere Westerly Winds (SWW) have been suggested to exert a critical influence on global climate through wind-driven upwelling of deep water in the Southern Ocean and the potentially resulting atmospheric CO2 variations. The investigation of the temporal and spatial evolution of the SWW along with forcings and feedbacks remains a significant challenge in climate research. In this study, the evolution of the SWW under orbital forcing from the early Holocene (9 kyr BP) to pre-industrial modern times is examined with transient experiments using the comprehensive coupled global climate model CCSM3. Analyses of the model results suggest that the annual and seasonal mean SWW were subject to an overall strengthening and poleward shifting trend during the course of the early-to-late Holocene under the influence of orbital forcing, except for the austral spring season, where the SWW exhibited an opposite trend of shifting towards the equator.
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 20 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rachmayani, Rima; Prange, Matthias; Lunt, Daniel J; Stone, Emma J; Schulz, Michael (2017): Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11. Paleoceanography, 32(11), 1089-1101, https://doi.org/10.1002/2017PA003149
    Publication Date: 2023-10-28
    Description: The Greenland Ice Sheet (GrIS) is thought to have contributed substantially to high global sea levels during the interglacials of Marine Isotope Stage (MIS) 5e and 11. Geological evidence suggests that the mass loss of the GrIS was greater during the peak interglacial of MIS 11 than MIS 5e, despite a weaker boreal summer insolation. We address this conundrum by using the three-dimensional thermomechanical ice-sheet model Glimmer forced by CCSM3 climate model output for MIS 5e and MIS 11 interglacial time slices. Our results suggest a stronger sensitivity of the GrIS to MIS 11 climate forcing than to MIS 5e forcing. Besides stronger greenhouse gas radiative forcing, the greater MIS 11 GrIS mass loss relative to MIS 5e is attributed to a larger oceanic heat transport towards high latitudes by a stronger Atlantic meridional overturning circulation. The vigorous MIS 11 ocean overturning, in turn, is related to a stronger wind-driven salt transport from low to high latitudes promoting North Atlantic Deep Water formation. The orbital insolation forcing, which causes the ocean current anomalies, is discussed.
    Keywords: Center for Marine Environmental Sciences; File format; File name; File size; Integrierte Analyse zwischeneiszeitlicher Klimadynamik; INTERDYNAMIK; MARUM; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 32 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...