ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Center for Marine Environmental Sciences; Chapopote; Device type; Dive81; Dive82; Dive83; Dive84; Elevation of event; Event label; GC; GeoB10617; GeoB10618; GeoB10619; GeoB10622; GeoB10623-2; GeoB10625; Gravity corer; LATITUDE; Latitude, additional; Location type; LONGITUDE; Longitude, additional; M67/2b; MARUM; Meteor (1986); Remote operated vehicle; Rock type; ROV; Sample code/label; SL-8  (1)
  • PANGAEA  (1)
Collection
Keywords
Publisher
  • PANGAEA  (1)
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Brüning, Markus; Sahling, Heiko; MacDonald, Ian R; Ding, Feng; Bohrmann, Gerhard (2010): Origin, distribution, and alteration of asphalts at the Chapopote Knoll, Southern Gulf of Mexico. Marine and Petroleum Geology, 27(5), 1093-1106, https://doi.org/10.1016/j.marpetgeo.2009.09.005
    Publication Date: 2023-05-12
    Description: Following the discovery of asphalt volcanism in the Campeche Knolls a research cruise was carried out in 2006 to unravel the nature of the asphalt deposits at Chapopote. The novel results support the concept that the asphalt deposits at the seafloor in 3000 m of water depth originate from the seepage of heavy petroleum with a density slightly greater than water. The released petroleum forms characteristic flow structures at the seafloor with surfaces that are 'ropy' or 'rough' similar to magmatic lava flows. The surface structures indicate that the viscosity of the heavy petroleum rapidly increases after extrusion due to loss of volatiles. Consequently, the heavy petroleum forms the observed asphalt deposit and solidifies. Detailed survey with a remotely operated vehicle revealed that the asphalts are subject to sequential alterations: e.g. volume reduction leading to the formation of visible cracks in the asphalt surface, followed by fragmentation of the entire deposit. While relatively fresh asphalt samples were gooey and sticky, older, fragmented pieces were found to be brittle without residual stickiness. Furthermore, there is evidence for petroleum seepage from below the asphalt deposits, leading to local up-doming and, sometimes, to whip-shaped extrusions. Extensive mapping by TV-guided tools of Chapopote Asphalt Volcano indicates that the main asphalt deposits occur at the south-western rim that borders a central, crater-like depression. The most recent asphalt deposit at Chapopote is the main asphalt field covering an area of ~2000 m**2. Asphalt volcanism is distinct from oil and gas seepage previously described in the Gulf of Mexico and elsewhere because it is characterized by episodic intrusions of semi-solid hydrocarbons that spread laterally over a substantial area and produce structures with significant vertical relief. As Chapopote occurs at the crest of a salt structure it is inferred that asphalt volcanism is a secondary result of salt tectonism.
    Keywords: Center for Marine Environmental Sciences; Chapopote; Device type; Dive81; Dive82; Dive83; Dive84; Elevation of event; Event label; GC; GeoB10617; GeoB10618; GeoB10619; GeoB10622; GeoB10623-2; GeoB10625; Gravity corer; LATITUDE; Latitude, additional; Location type; LONGITUDE; Longitude, additional; M67/2b; MARUM; Meteor (1986); Remote operated vehicle; Rock type; ROV; Sample code/label; SL-8
    Type: Dataset
    Format: text/tab-separated-values, 68 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...