ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-17
    Description: Research and development activities directed toward commercial production of cellulosic ethanol have created the opportunity to dramatically increase the transformation of lignin to value-added products. Here, we highlight recent advances in this lignin valorization effort. Discovery of genetic variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways have produced lignin feedstocks with favorable properties for recovery and downstream conversion. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ragauskas, Arthur J -- Beckham, Gregg T -- Biddy, Mary J -- Chandra, Richard -- Chen, Fang -- Davis, Mark F -- Davison, Brian H -- Dixon, Richard A -- Gilna, Paul -- Keller, Martin -- Langan, Paul -- Naskar, Amit K -- Saddler, Jack N -- Tschaplinski, Timothy J -- Tuskan, Gerald A -- Wyman, Charles E -- New York, N.Y. -- Science. 2014 May 16;344(6185):1246843. doi: 10.1126/science.1246843.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA. arthur.ragauskas@chemistry.gatech.edu. ; National Bioenergy Center and National Advanced Biofuels Consortium, National Renewable Energy Laboratory (NREL), Golden, CO 80402, USA. ; Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. ; BioEnergy Science Center, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA. ; BioEnergy Science Center and National Advanced Biofuels Consortium, National Renewable Energy Laboratory, Golden, CO 80402, USA. ; BioEnergy Science Center, Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA. ; Energy and Environmental Science Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ; Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. ; BioEnergy Science Center, Center for Environmental Research and Technology and Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92507, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24833396" target="_blank"〉PubMed〈/a〉
    Keywords: Bioengineering/*methods ; Biofuels ; Carbon ; Cellulose/*chemistry ; Crops, Agricultural/chemistry/genetics/metabolism ; Elastomers ; Lignin/*biosynthesis/chemistry/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...