ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-18
    Description: The Myc oncogene regulates the expression of several components of the protein synthetic machinery, including ribosomal proteins, initiation factors of translation, RNA polymerase III and ribosomal DNA. Whether and how increasing the cellular protein synthesis capacity affects the multistep process leading to cancer remains to be addressed. Here we use ribosomal protein heterozygote mice as a genetic tool to restore increased protein synthesis in Emu-Myc/+ transgenic mice to normal levels, and show that the oncogenic potential of Myc in this context is suppressed. Our findings demonstrate that the ability of Myc to increase protein synthesis directly augments cell size and is sufficient to accelerate cell cycle progression independently of known cell cycle targets transcriptionally regulated by Myc. In addition, when protein synthesis is restored to normal levels, Myc-overexpressing precancerous cells are more efficiently eliminated by programmed cell death. Our findings reveal a new mechanism that links increases in general protein synthesis rates downstream of an oncogenic signal to a specific molecular impairment in the modality of translation initiation used to regulate the expression of selective messenger RNAs. We show that an aberrant increase in cap-dependent translation downstream of Myc hyperactivation specifically impairs the translational switch to internal ribosomal entry site (IRES)-dependent translation that is required for accurate mitotic progression. Failure of this translational switch results in reduced mitotic-specific expression of the endogenous IRES-dependent form of Cdk11 (also known as Cdc2l and PITSLRE), which leads to cytokinesis defects and is associated with increased centrosome numbers and genome instability in Emu-Myc/+ mice. When accurate translational control is re-established in Emu-Myc/+ mice, genome instability is suppressed. Our findings demonstrate how perturbations in translational control provide a highly specific outcome for gene expression, genome stability and cancer initiation that have important implications for understanding the molecular mechanism of cancer formation at the post-genomic level.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880952/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880952/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barna, Maria -- Pusic, Aya -- Zollo, Ornella -- Costa, Maria -- Kondrashov, Nadya -- Rego, Eduardo -- Rao, Pulivarthi H -- Ruggero, Davide -- R01 HL085572/HL/NHLBI NIH HHS/ -- R01 HL085572-03/HL/NHLBI NIH HHS/ -- England -- Nature. 2008 Dec 18;456(7224):971-5. doi: 10.1038/nature07449. Epub 2008 Nov 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry & Biophysics, University of California San Francisco, Rock Hall Room 384C, 1550 Fourth Street, San Francisco, California 94158-2517, USA. maria.barna@ucsf.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19011615" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis ; B-Lymphocytes/cytology/metabolism/pathology ; Cell Division ; Cell Size ; Cells, Cultured ; Cytokinesis ; Gene Expression Regulation, Neoplastic ; Genes, myc/*genetics ; Genomic Instability ; Heterozygote ; Lymphoma/genetics/pathology ; Mice ; Mice, Inbred C57BL ; Mitosis ; Oncogene Protein p55(v-myc)/*genetics/*metabolism ; Precancerous Conditions/metabolism/pathology ; *Protein Biosynthesis ; Protein-Serine-Threonine Kinases/metabolism ; Ribosomal Proteins/*deficiency/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-05-13
    Description: The DKC1 gene encodes a pseudouridine synthase that modifies ribosomal RNA (rRNA). DKC1 is mutated in people with X-linked dyskeratosis congenita (X-DC), a disease characterized by bone marrow failure, skin abnormalities, and increased susceptibility to cancer. How alterations in ribosome modification might lead to cancer and other features of the disease remains unknown. Using an unbiased proteomics strategy, we discovered a specific defect in IRES (internal ribosome entry site)-dependent translation in Dkc1(m) mice and in cells from X-DC patients. This defect results in impaired translation of messenger RNAs containing IRES elements, including those encoding the tumor suppressor p27(Kip1) and the antiapoptotic factors Bcl-xL and XIAP (X-linked Inhibitor of Apoptosis Protein). Moreover, Dkc1(m) ribosomes were unable to direct translation from IRES elements present in viral messenger RNAs. These findings reveal a potential mechanism by which defective ribosome activity leads to disease and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, Andrew -- Peng, Guang -- Brandenburger, Yves -- Zollo, Ornella -- Xu, Wei -- Rego, Eduardo -- Ruggero, Davide -- New York, N.Y. -- Science. 2006 May 12;312(5775):902-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690864" target="_blank"〉PubMed〈/a〉
    Keywords: *5' Untranslated Regions ; Animals ; Cell Cycle Proteins/chemistry/*genetics/physiology ; Cell Line ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p27/biosynthesis/genetics ; Dyskeratosis Congenita/*genetics ; Humans ; Insect Viruses/genetics ; Lymphocytes/metabolism ; Male ; Mice ; Nuclear Proteins/chemistry/*genetics/physiology ; Oligonucleotide Array Sequence Analysis ; Point Mutation ; Polyribosomes/metabolism ; *Protein Biosynthesis ; Proteomics ; Pseudouridine/metabolism ; RNA Viruses/genetics ; RNA, Messenger/*genetics/metabolism ; RNA, Ribosomal/metabolism ; Transfection ; X-Linked Inhibitor of Apoptosis Protein/biosynthesis/genetics ; bcl-X Protein/biosynthesis/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...