ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-02-22
    Description: Ischaemia of the heart, brain and limbs is a leading cause of morbidity and mortality worldwide. Hypoxia stimulates the secretion of vascular endothelial growth factor (VEGF) and other angiogenic factors, leading to neovascularization and protection against ischaemic injury. Here we show that the transcriptional coactivator PGC-1alpha (peroxisome-proliferator-activated receptor-gamma coactivator-1alpha), a potent metabolic sensor and regulator, is induced by a lack of nutrients and oxygen, and PGC-1alpha powerfully regulates VEGF expression and angiogenesis in cultured muscle cells and skeletal muscle in vivo. PGC-1alpha-/- mice show a striking failure to reconstitute blood flow in a normal manner to the limb after an ischaemic insult, whereas transgenic expression of PGC-1alpha in skeletal muscle is protective. Surprisingly, the induction of VEGF by PGC-1alpha does not involve the canonical hypoxia response pathway and hypoxia inducible factor (HIF). Instead, PGC-1alpha coactivates the orphan nuclear receptor ERR-alpha (oestrogen-related receptor-alpha) on conserved binding sites found in the promoter and in a cluster within the first intron of the VEGF gene. Thus, PGC-1alpha and ERR-alpha, major regulators of mitochondrial function in response to exercise and other stimuli, also control a novel angiogenic pathway that delivers needed oxygen and substrates. PGC-1alpha may provide a novel therapeutic target for treating ischaemic diseases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Arany, Zoltan -- Foo, Shi-Yin -- Ma, Yanhong -- Ruas, Jorge L -- Bommi-Reddy, Archana -- Girnun, Geoffrey -- Cooper, Marcus -- Laznik, Dina -- Chinsomboon, Jessica -- Rangwala, Shamina M -- Baek, Kwan Hyuck -- Rosenzweig, Anthony -- Spiegelman, Bruce M -- P30 DK040561/DK/NIDDK NIH HHS/ -- P30 DK040561-12/DK/NIDDK NIH HHS/ -- R01 DK054477/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Feb 21;451(7181):1008-12. doi: 10.1038/nature06613.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. zarany1@partners.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18288196" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Hypoxia ; Cells, Cultured ; Gene Expression Regulation ; Hypoxia-Inducible Factor 1/metabolism ; Ischemia/*metabolism ; Mice ; Mice, Transgenic ; Muscle, Skeletal/metabolism ; *Neovascularization, Physiologic ; Oxygen/metabolism ; Receptors, Estrogen/metabolism ; Trans-Activators/deficiency/genetics/*metabolism ; Transcription Factors ; Transgenes/genetics ; Vascular Endothelial Growth Factor A/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1997-01-31
    Description: A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dudek, H -- Datta, S R -- Franke, T F -- Birnbaum, M J -- Yao, R -- Cooper, G M -- Segal, R A -- Kaplan, D R -- Greenberg, M E -- DK39519/DK/NIDDK NIH HHS/ -- R01 CA18689/CA/NCI NIH HHS/ -- R01 CA43855/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1997 Jan 31;275(5300):661-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, Children's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9005851" target="_blank"〉PubMed〈/a〉
    Keywords: Androstadienes/pharmacology ; Animals ; *Apoptosis/drug effects ; Calcium-Calmodulin-Dependent Protein Kinases/metabolism ; Cell Survival/drug effects ; Cells, Cultured ; Cerebellum/cytology ; Chromones/pharmacology ; Enzyme Activation ; Enzyme Inhibitors/pharmacology ; Insulin/pharmacology ; Insulin-Like Growth Factor I/*pharmacology ; Morpholines/pharmacology ; Neurons/*cytology/drug effects/enzymology ; Phosphatidylinositol 3-Kinases ; Phosphotransferases (Alcohol Group Acceptor)/metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/chemistry/genetics/*metabolism ; Proto-Oncogene Proteins c-akt ; Rats ; Ribosomal Protein S6 Kinases ; *Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1982-08-27
    Description: Cellular genes potentially capable of inducing oncogenic transformation have been identified by homology to the transforming genes of retroviruses and by the biological activity of cellular DNA's in transfection assays. DNA's of various tumors induce transformation with high efficiencies, indicating that oncogenesis can involve dominant genetic alterations resulting in activation of cellular transforming genes. The identification and characterization of cellular transforming genes and their possible involvement in naturally occurring cancers, is discussed.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, G M -- New York, N.Y. -- Science. 1982 Aug 27;217(4562):801-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6285471" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; *Cell Transformation, Neoplastic ; Cells, Cultured ; Chick Embryo ; DNA/genetics ; DNA Restriction Enzymes ; DNA, Viral/genetics ; Gene Expression Regulation ; *Genes ; Genes, Viral ; Humans ; Mice ; Neoplasms/*genetics ; Oncogene Protein pp60(v-src) ; Rats ; Retroviridae/*genetics ; Transfection ; Viral Proteins/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...