ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-11-06
    Description: Genomes are organized into high-level three-dimensional structures, and DNA elements separated by long genomic distances can in principle interact functionally. Many transcription factors bind to regulatory DNA elements distant from gene promoters. Although distal binding sites have been shown to regulate transcription by long-range chromatin interactions at a few loci, chromatin interactions and their impact on transcription regulation have not been investigated in a genome-wide manner. Here we describe the development of a new strategy, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) for the de novo detection of global chromatin interactions, with which we have comprehensively mapped the chromatin interaction network bound by oestrogen receptor alpha (ER-alpha) in the human genome. We found that most high-confidence remote ER-alpha-binding sites are anchored at gene promoters through long-range chromatin interactions, suggesting that ER-alpha functions by extensive chromatin looping to bring genes together for coordinated transcriptional regulation. We propose that chromatin interactions constitute a primary mechanism for regulating transcription in mammalian genomes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774924/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774924/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fullwood, Melissa J -- Liu, Mei Hui -- Pan, You Fu -- Liu, Jun -- Xu, Han -- Mohamed, Yusoff Bin -- Orlov, Yuriy L -- Velkov, Stoyan -- Ho, Andrea -- Mei, Poh Huay -- Chew, Elaine G Y -- Huang, Phillips Yao Hui -- Welboren, Willem-Jan -- Han, Yuyuan -- Ooi, Hong Sain -- Ariyaratne, Pramila N -- Vega, Vinsensius B -- Luo, Yanquan -- Tan, Peck Yean -- Choy, Pei Ye -- Wansa, K D Senali Abayratna -- Zhao, Bing -- Lim, Kar Sian -- Leow, Shi Chi -- Yow, Jit Sin -- Joseph, Roy -- Li, Haixia -- Desai, Kartiki V -- Thomsen, Jane S -- Lee, Yew Kok -- Karuturi, R Krishna Murthy -- Herve, Thoreau -- Bourque, Guillaume -- Stunnenberg, Hendrik G -- Ruan, Xiaoan -- Cacheux-Rataboul, Valere -- Sung, Wing-Kin -- Liu, Edison T -- Wei, Chia-Lin -- Cheung, Edwin -- Ruan, Yijun -- 1U54HG004557-01/HG/NHGRI NIH HHS/ -- R01 HG004456/HG/NHGRI NIH HHS/ -- R01 HG004456-01/HG/NHGRI NIH HHS/ -- R01 HG004456-02/HG/NHGRI NIH HHS/ -- R01 HG004456-03/HG/NHGRI NIH HHS/ -- R01HG003521-01/HG/NHGRI NIH HHS/ -- R01HG004456-01/HG/NHGRI NIH HHS/ -- U54 HG004557/HG/NHGRI NIH HHS/ -- U54 HG004557-01/HG/NHGRI NIH HHS/ -- U54 HG004557-02/HG/NHGRI NIH HHS/ -- U54 HG004557-03/HG/NHGRI NIH HHS/ -- U54 HG004557-04/HG/NHGRI NIH HHS/ -- England -- Nature. 2009 Nov 5;462(7269):58-64. doi: 10.1038/nature08497.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19890323" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; Chromatin/*genetics/*metabolism ; Chromatin Immunoprecipitation ; Cross-Linking Reagents ; Estrogen Receptor alpha/*metabolism ; Formaldehyde ; Genome, Human/*genetics ; Humans ; Promoter Regions, Genetic/genetics ; Protein Binding ; Reproducibility of Results ; Sequence Analysis, DNA ; Transcription, Genetic ; Transcriptional Activation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-12-19
    Description: Several neurotransmitters act through G-protein-coupled receptors to evoke a 'slow' excitation of neurons. These include peptides, such as substance P and neurotensin, as well as acetylcholine and noradrenaline. Unlike the fast (approximately millisecond) ionotropic actions of small-molecule neurotransmitters, the slow excitation is not well understood at the molecular level, but can be mainly attributed to suppressing K(+) currents and/or activating a non-selective cation channel. The molecular identity of this cation channel has yet to be determined; similarly, how the channel is activated and its relative contribution to neuronal excitability induced by the neuropeptides are unknown. Here we show that, in the mouse hippocampal and ventral tegmental area neurons, substance P and neurotensin activate a channel complex containing NALCN and a large previously unknown protein UNC-80. The activation by substance P through TACR1 (a G-protein-coupled receptor for substance P) occurs by means of a unique mechanism: it does not require G-protein activation but is dependent on Src family kinases. These findings identify NALCN as the cation channel activated by substance P receptor, and suggest that UNC-80 and Src family kinases, rather than a G protein, are involved in the coupling from receptor to channel.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810458/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810458/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Boxun -- Su, Yanhua -- Das, Sudipto -- Wang, Haikun -- Wang, Yan -- Liu, Jin -- Ren, Dejian -- R01 NS055293/NS/NINDS NIH HHS/ -- R01 NS055293-01A1/NS/NINDS NIH HHS/ -- England -- Nature. 2009 Feb 5;457(7230):741-4. doi: 10.1038/nature07579. Epub 2008 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology, University of Pennsylvania, 415 S. University Avenue, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19092807" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Electric Conductivity ; Guanosine Triphosphate/metabolism ; Heterotrimeric GTP-Binding Proteins ; Hippocampus/cytology ; Humans ; Ion Channels/agonists/genetics/*metabolism ; Mice ; Molecular Sequence Data ; Nerve Tissue Proteins/agonists/genetics/*metabolism ; Neurons/metabolism ; Neurotensin/pharmacology ; Neurotransmitter Agents/*pharmacology ; Receptors, Neurokinin-1/metabolism ; Substance P/pharmacology ; Transfection ; Ventral Tegmental Area/cytology ; src-Family Kinases/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-01-24
    Description: We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila, the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun kinase phosphatase Puckered, thereby inducing tumor necrosis factor (TNF)/Eiger-dependent apoptosis. In humans, we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinomas (RCCs), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756524/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jiang -- Ghanim, Murad -- Xue, Lei -- Brown, Christopher D -- Iossifov, Ivan -- Angeletti, Cesar -- Hua, Sujun -- Negre, Nicolas -- Ludwig, Michael -- Stricker, Thomas -- Al-Ahmadie, Hikmat A -- Tretiakova, Maria -- Camp, Robert L -- Perera-Alberto, Montse -- Rimm, David L -- Xu, Tian -- Rzhetsky, Andrey -- White, Kevin P -- P50 GM081892/GM/NIGMS NIH HHS/ -- P50 GM081892-01A1/GM/NIGMS NIH HHS/ -- R01 HG003012/HG/NHGRI NIH HHS/ -- R01 HG003012-04/HG/NHGRI NIH HHS/ -- UL1 RR024999/RR/NCRR NIH HHS/ -- UL1 RR024999-02/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2009 Feb 27;323(5918):1218-22. doi: 10.1126/science.1157669. Epub 2009 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Genomics and Systems Biology, University of Chicago and Argonne National Laboratory, Chicago, IL 60637, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19164706" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis ; Carcinoma, Renal Cell/*genetics/metabolism ; Cell Line ; Compound Eye, Arthropod/embryology/metabolism ; Drosophila Proteins/genetics/metabolism ; Drosophila melanogaster/embryology/*genetics/metabolism ; Embryo, Nonmammalian/metabolism ; Fushi Tarazu Transcription Factors/genetics/metabolism ; Gene Expression Profiling ; Gene Regulatory Networks ; Homeodomain Proteins/genetics/metabolism ; Humans ; Janus Kinases/*metabolism ; Kidney/metabolism ; Kidney Neoplasms/*genetics/metabolism ; Molecular Sequence Data ; Nervous System/embryology ; Nuclear Proteins/*genetics/metabolism ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Repressor Proteins/*genetics/metabolism ; *Signal Transduction ; Transcription Factors/genetics/metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-02
    Description: Receptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic beta-catenin and a transcriptional program similar to that caused by Wnt3a. In Xenopus embryos, Ripk4 synergized with coexpressed Xwnt8, whereas Ripk4 morpholinos or catalytic inactive Ripk4 antagonized Wnt signaling. RIPK4 interacted constitutively with the adaptor protein DVL2 and, after Wnt3a stimulation, with the co-receptor LRP6. Phosphorylation of DVL2 by RIPK4 favored canonical Wnt signaling. Wnt-dependent growth of xenografted human tumor cells was suppressed by RIPK4 knockdown, suggesting that RIPK4 overexpression may contribute to the growth of certain tumor types.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094295/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, XiaoDong -- McGann, James C -- Liu, Bob Y -- Hannoush, Rami N -- Lill, Jennie R -- Pham, Victoria -- Newton, Kim -- Kakunda, Michael -- Liu, Jinfeng -- Yu, Christine -- Hymowitz, Sarah G -- Hongo, Jo-Anne -- Wynshaw-Boris, Anthony -- Polakis, Paul -- Harland, Richard M -- Dixit, Vishva M -- R01 GM042341/GM/NIGMS NIH HHS/ -- R01 NS073159/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2013 Mar 22;339(6126):1441-5. doi: 10.1126/science.1232253. Epub 2013 Jan 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23371553" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*metabolism ; Animals ; Cell Line ; Cell Line, Tumor ; Cytosol/metabolism ; Female ; Gene Knockdown Techniques ; HEK293 Cells ; Humans ; Low Density Lipoprotein Receptor-Related Protein-6/metabolism ; Neoplasm Transplantation ; Neoplasms/metabolism ; Ovarian Neoplasms/metabolism ; Phosphoproteins/*metabolism ; Phosphorylation ; Protein-Serine-Threonine Kinases/genetics/*metabolism ; Transplantation, Heterologous ; *Wnt Signaling Pathway ; Wnt3A Protein/metabolism ; Xenopus Proteins/genetics/*metabolism ; Xenopus laevis/embryology/metabolism ; beta Catenin/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-04
    Description: In the past, avian influenza viruses have crossed species barriers to trigger human pandemics by reassorting with mammal-infective viruses in intermediate livestock hosts. H5N1 viruses are able to infect pigs, and some of them have affinity for the mammalian type alpha-2,6-linked sialic acid airway receptor. Using reverse genetics, we systematically created 127 reassortant viruses between a duck isolate of H5N1, specifically retaining its hemagglutinin (HA) gene throughout, and a highly transmissible, human-infective H1N1 virus. We tested the virulence of the reassortants in mice as a correlate for virulence in humans and tested transmissibility in guinea pigs, which have both avian and mammalian types of airway receptor. Transmission studies showed that the H1N1 virus genes encoding acidic polymerase and nonstructural protein made the H5N1 virus transmissible by respiratory droplet between guinea pigs without killing them. Further experiments implicated other H1N1 genes in the enhancement of mammal-to-mammal transmission, including those that encode nucleoprotein, neuraminidase, and matrix, as well as mutations in H5 HA that improve affinity for humanlike airway receptors. Hence, avian H5N1 subtype viruses do have the potential to acquire mammalian transmissibility by reassortment in current agricultural scenarios.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Ying -- Zhang, Qianyi -- Kong, Huihui -- Jiang, Yongping -- Gao, Yuwei -- Deng, Guohua -- Shi, Jianzhong -- Tian, Guobin -- Liu, Liling -- Liu, Jinxiong -- Guan, Yuntao -- Bu, Zhigao -- Chen, Hualan -- New York, N.Y. -- Science. 2013 Jun 21;340(6139):1459-63. doi: 10.1126/science.1229455. Epub 2013 May 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23641061" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Brain/virology ; Cell Line ; Ferrets ; Genes, Viral ; Guinea Pigs ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics ; Humans ; Influenza A Virus, H1N1 Subtype/*genetics/pathogenicity ; Influenza A Virus, H5N1 Subtype/*genetics/pathogenicity ; Influenza, Human/transmission/virology ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Mutation ; Orthomyxoviridae Infections/*transmission/*virology ; Reassortant Viruses/*genetics/*pathogenicity ; Receptors, Cell Surface/metabolism ; Receptors, Virus/metabolism ; Respiratory System/*virology ; Reverse Genetics ; Ribonucleoproteins/metabolism ; Viral Proteins/genetics/metabolism ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-07-31
    Description: Gene silencing through RNA interference (RNAi) is carried out by RISC, the RNA-induced silencing complex. RISC contains two signature components, small interfering RNAs (siRNAs) and Argonaute family proteins. Here, we show that the multiple Argonaute proteins present in mammals are both biologically and biochemically distinct, with a single mammalian family member, Argonaute2, being responsible for messenger RNA cleavage activity. This protein is essential for mouse development, and cells lacking Argonaute2 are unable to mount an experimental response to siRNAs. Mutations within a cryptic ribonuclease H domain within Argonaute2, as identified by comparison with the structure of an archeal Argonaute protein, inactivate RISC. Thus, our evidence supports a model in which Argonaute contributes "Slicer" activity to RISC, providing the catalytic engine for RNAi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Jidong -- Carmell, Michelle A -- Rivas, Fabiola V -- Marsden, Carolyn G -- Thomson, J Michael -- Song, Ji-Joon -- Hammond, Scott M -- Joshua-Tor, Leemor -- Hannon, Gregory J -- New York, N.Y. -- Science. 2004 Sep 3;305(5689):1437-41. Epub 2004 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15284456" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Argonaute Proteins ; Catalysis ; Cell Line ; Cells, Cultured ; Central Nervous System/embryology ; Embryonic and Fetal Development ; Eukaryotic Initiation Factor-2 ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Humans ; In Situ Hybridization ; Mice ; MicroRNAs/metabolism ; Molecular Sequence Data ; Mutagenesis, Insertional ; Oligonucleotide Array Sequence Analysis ; Peptide Initiation Factors/chemistry/*metabolism ; Point Mutation ; *RNA Interference ; RNA, Double-Stranded ; RNA, Messenger/*metabolism ; RNA, Small Interfering/metabolism ; RNA-Induced Silencing Complex/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-12-22
    Description: MCL1 is essential for the survival of stem and progenitor cells of multiple lineages, and is unique among pro-survival BCL2 family members in that it is rapidly turned over through the action of ubiquitin ligases. B- and mantle-cell lymphomas, chronic myeloid leukaemia, and multiple myeloma, however, express abnormally high levels of MCL1, contributing to chemoresistance and disease relapse. The mechanism of MCL1 overexpression in cancer is not well understood. Here we show that the deubiquitinase USP9X stabilizes MCL1 and thereby promotes cell survival. USP9X binds MCL1 and removes the Lys 48-linked polyubiquitin chains that normally mark MCL1 for proteasomal degradation. Increased USP9X expression correlates with increased MCL1 protein in human follicular lymphomas and diffuse large B-cell lymphomas. Moreover, patients with multiple myeloma overexpressing USP9X have a poor prognosis. Knockdown of USP9X increases MCL1 polyubiquitination, which enhances MCL1 turnover and cell killing by the BH3 mimetic ABT-737. These results identify USP9X as a prognostic and therapeutic target, and they show that deubiquitinases may stabilize labile oncoproteins in human malignancies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schwickart, Martin -- Huang, Xiaodong -- Lill, Jennie R -- Liu, Jinfeng -- Ferrando, Ronald -- French, Dorothy M -- Maecker, Heather -- O'Rourke, Karen -- Bazan, Fernando -- Eastham-Anderson, Jeffrey -- Yue, Peng -- Dornan, David -- Huang, David C S -- Dixit, Vishva M -- England -- Nature. 2010 Jan 7;463(7277):103-7. doi: 10.1038/nature08646. Epub 2009 Dec 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20023629" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Biphenyl Compounds/pharmacology ; Cell Line ; Cell Line, Tumor ; Cell Survival ; DNA Damage ; Etoposide/pharmacology ; Female ; Gene Expression Regulation, Neoplastic ; Gene Knockdown Techniques ; Half-Life ; Humans ; Lysine/metabolism ; Mice ; Mice, SCID ; Myeloid Cell Leukemia Sequence 1 Protein ; Neoplasms/diagnosis/*metabolism/*pathology ; Nitrophenols/pharmacology ; Phosphorylation/radiation effects ; Piperazines/pharmacology ; Polyubiquitin/*metabolism ; Prognosis ; Protein Binding/radiation effects ; Protein Stability ; Proto-Oncogene Proteins c-bcl-2/genetics/*metabolism ; RNA Interference ; Sulfonamides/pharmacology ; Taxoids/pharmacology ; Ubiquitin Thiolesterase/deficiency/genetics/*metabolism ; Ubiquitination ; Ultraviolet Rays ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-05-17
    Description: The proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5. ETV1, which is mutated in prostate cancer more often, was degraded after being ubiquitinated by COP1. Truncated ETV1 encoded by prostate cancer translocation TMPRSS2:ETV1 lacks the critical COP1 binding motifs and was 50-fold more stable than wild-type ETV1. Almost all patient translocations render ETV1 insensitive to COP1, implying that this confers a selective advantage to prostate epithelial cells. Indeed, COP1 deficiency in mouse prostate elevated ETV1 and produced increased cell proliferation, hyperplasia, and early prostate intraepithelial neoplasia. Combined loss of COP1 and PTEN enhanced the invasiveness of mouse prostate adenocarcinomas. Finally, rare human prostate cancer samples showed hemizygous loss of the COP1 gene, loss of COP1 protein, and elevated ETV1 protein while lacking a translocation event. These findings identify COP1 as a tumour suppressor whose downregulation promotes prostatic epithelial cell proliferation and tumorigenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vitari, Alberto C -- Leong, Kevin G -- Newton, Kim -- Yee, Cindy -- O'Rourke, Karen -- Liu, Jinfeng -- Phu, Lilian -- Vij, Rajesh -- Ferrando, Ronald -- Couto, Suzana S -- Mohan, Sankar -- Pandita, Ajay -- Hongo, Jo-Anne -- Arnott, David -- Wertz, Ingrid E -- Gao, Wei-Qiang -- French, Dorothy M -- Dixit, Vishva M -- England -- Nature. 2011 May 15;474(7351):403-6. doi: 10.1038/nature10005.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiological Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21572435" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Carrier Proteins/metabolism ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; DNA-Binding Proteins/genetics/metabolism ; Humans ; Male ; Mice ; Nuclear Proteins/deficiency/*metabolism ; PTEN Phosphohydrolase/deficiency ; Prostatic Neoplasms/metabolism/pathology ; Protein Binding ; Proto-Oncogene Proteins c-ets/*metabolism ; Transcription Factors/genetics/metabolism ; Tumor Suppressor Proteins/*metabolism ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-03-04
    Description: Microtubules have pivotal roles in fundamental cellular processes and are targets of antitubulin chemotherapeutics. Microtubule-targeted agents such as Taxol and vincristine are prescribed widely for various malignancies, including ovarian and breast adenocarcinomas, non-small-cell lung cancer, leukaemias and lymphomas. These agents arrest cells in mitosis and subsequently induce cell death through poorly defined mechanisms. The strategies that resistant tumour cells use to evade death induced by antitubulin agents are also unclear. Here we show that the pro-survival protein MCL1 (ref. 3) is a crucial regulator of apoptosis triggered by antitubulin chemotherapeutics. During mitotic arrest, MCL1 protein levels decline markedly, through a post-translational mechanism, potentiating cell death. Phosphorylation of MCL1 directs its interaction with the tumour-suppressor protein FBW7, which is the substrate-binding component of a ubiquitin ligase complex. The polyubiquitylation of MCL1 then targets it for proteasomal degradation. The degradation of MCL1 was blocked in patient-derived tumour cells that lacked FBW7 or had loss-of-function mutations in FBW7, conferring resistance to antitubulin agents and promoting chemotherapeutic-induced polyploidy. Additionally, primary tumour samples were enriched for FBW7 inactivation and elevated MCL1 levels, underscoring the prominent roles of these proteins in oncogenesis. Our findings suggest that profiling the FBW7 and MCL1 status of tumours, in terms of protein levels, messenger RNA levels and genetic status, could be useful to predict the response of patients to antitubulin chemotherapeutics.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wertz, Ingrid E -- Kusam, Saritha -- Lam, Cynthia -- Okamoto, Toru -- Sandoval, Wendy -- Anderson, Daniel J -- Helgason, Elizabeth -- Ernst, James A -- Eby, Mike -- Liu, Jinfeng -- Belmont, Lisa D -- Kaminker, Josh S -- O'Rourke, Karen M -- Pujara, Kanan -- Kohli, Pawan Bir -- Johnson, Adam R -- Chiu, Mark L -- Lill, Jennie R -- Jackson, Peter K -- Fairbrother, Wayne J -- Seshagiri, Somasekar -- Ludlam, Mary J C -- Leong, Kevin G -- Dueber, Erin C -- Maecker, Heather -- Huang, David C S -- Dixit, Vishva M -- CA043540/CA/NCI NIH HHS/ -- CA80188/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 3;471(7336):110-4. doi: 10.1038/nature09779.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA. ingrid@gene.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21368834" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/drug effects ; Cell Cycle Proteins/genetics/*metabolism ; Cell Line ; Cell Line, Tumor ; Cell Transformation, Neoplastic/drug effects ; Drug Resistance, Neoplasm ; F-Box Proteins/genetics/*metabolism ; Fibroblasts ; Humans ; Mice ; Mitosis/drug effects ; Myeloid Cell Leukemia Sequence 1 Protein ; Paclitaxel/pharmacology ; Pharmacogenetics ; Phosphorylation/drug effects ; Polyploidy ; Proteasome Endopeptidase Complex/metabolism ; Protein Binding/drug effects ; Proto-Oncogene Proteins c-bcl-2/deficiency/genetics/*metabolism ; RNA, Messenger/genetics/metabolism ; Tubulin/*metabolism ; Tubulin Modulators/*pharmacology ; Ubiquitin-Protein Ligases/deficiency/genetics/*metabolism ; Vincristine/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-12-04
    Description: Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-alpha activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1-RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-alpha. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1-RIP3 complex formation and TNF-alpha-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2(-/-) mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Narayan, Nisha -- Lee, In Hye -- Borenstein, Ronen -- Sun, Junhui -- Wong, Renee -- Tong, Guang -- Fergusson, Maria M -- Liu, Jie -- Rovira, Ilsa I -- Cheng, Hwei-Ling -- Wang, Guanghui -- Gucek, Marjan -- Lombard, David -- Alt, Fredrick W -- Sack, Michael N -- Murphy, Elizabeth -- Cao, Liu -- Finkel, Toren -- Intramural NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 13;492(7428):199-204. doi: 10.1038/nature11700. Epub 2012 Nov 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular Medicine, National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23201684" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line ; Female ; HEK293 Cells ; HeLa Cells ; Humans ; Jurkat Cells ; Male ; Mice ; Necrosis/*enzymology ; Nuclear Pore Complex Proteins/metabolism ; Protein Binding ; Receptor-Interacting Protein Serine-Threonine Kinases/metabolism ; Sirtuin 2/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...