ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-08-23
    Description: Brown fat can increase energy expenditure and protect against obesity through a specialized program of uncoupled respiration. Here we show by in vivo fate mapping that brown, but not white, fat cells arise from precursors that express Myf5, a gene previously thought to be expressed only in the myogenic lineage. We also demonstrate that the transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain containing 16) controls a bidirectional cell fate switch between skeletal myoblasts and brown fat cells. Loss of PRDM16 from brown fat precursors causes a loss of brown fat characteristics and promotes muscle differentiation. Conversely, ectopic expression of PRDM16 in myoblasts induces their differentiation into brown fat cells. PRDM16 stimulates brown adipogenesis by binding to PPAR-gamma (peroxisome-proliferator-activated receptor-gamma) and activating its transcriptional function. Finally, Prdm16-deficient brown fat displays an abnormal morphology, reduced thermogenic gene expression and elevated expression of muscle-specific genes. Taken together, these data indicate that PRDM16 specifies the brown fat lineage from a progenitor that expresses myoblast markers and is not involved in white adipogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583329/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2583329/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seale, Patrick -- Bjork, Bryan -- Yang, Wenli -- Kajimura, Shingo -- Chin, Sherry -- Kuang, Shihuan -- Scime, Anthony -- Devarakonda, Srikripa -- Conroe, Heather M -- Erdjument-Bromage, Hediye -- Tempst, Paul -- Rudnicki, Michael A -- Beier, David R -- Spiegelman, Bruce M -- R01 AR044031/AR/NIAMS NIH HHS/ -- R01 AR044031-11/AR/NIAMS NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-27/DK/NIDDK NIH HHS/ -- England -- Nature. 2008 Aug 21;454(7207):961-7. doi: 10.1038/nature07182.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719582" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes, Brown/cytology/*metabolism ; Adipocytes, White/metabolism ; Adipose Tissue, Brown/cytology ; Animals ; COS Cells ; *Cell Differentiation/genetics ; Cell Line ; Cercopithecus aethiops ; DNA-Binding Proteins/genetics/*metabolism ; *Gene Expression Regulation, Developmental ; Male ; Mice ; Muscle Development/genetics ; Muscle, Skeletal/cytology/growth & development/*metabolism ; Myogenic Regulatory Factor 5/genetics ; PPAR gamma/genetics ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-31
    Description: Brown adipose cells are specialized to dissipate chemical energy in the form of heat, as a physiological defence against cold and obesity. PRDM16 (PR domain containing 16) is a 140 kDa zinc finger protein that robustly induces brown fat determination and differentiation. Recent data suggests that brown fat cells arise in vivo from a Myf5-positive, myoblastic lineage by the action of PRDM16 (ref. 3); however, the molecular mechanisms responsible for this developmental switch is unclear. Here we show that PRDM16 forms a transcriptional complex with the active form of C/EBP-beta (also known as LAP), acting as a critical molecular unit that controls the cell fate switch from myoblastic precursors to brown fat cells. Forced expression of PRDM16 and C/EBP-beta is sufficient to induce a fully functional brown fat program in naive fibroblastic cells, including skin fibroblasts from mouse and man. Transplantation of fibroblasts expressing these two factors into mice gives rise to an ectopic fat pad with the morphological and biochemical characteristics of brown fat. Like endogenous brown fat, this synthetic brown fat tissue acts as a sink for glucose uptake, as determined by positron emission tomography with fluorodeoxyglucose. These data indicate that the PRDM16-C/EBP-beta complex initiates brown fat formation from myoblastic precursors, and may provide opportunities for the development of new therapeutics for obesity and type-2 diabetes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754867/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754867/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kajimura, Shingo -- Seale, Patrick -- Kubota, Kazuishi -- Lunsford, Elaine -- Frangioni, John V -- Gygi, Steven P -- Spiegelman, Bruce M -- DK081605/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- GM67945/GM/NIGMS NIH HHS/ -- HG3456/HG/NHGRI NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-28/DK/NIDDK NIH HHS/ -- S10-RR-023010/RR/NCRR NIH HHS/ -- England -- Nature. 2009 Aug 27;460(7259):1154-8. doi: 10.1038/nature08262. Epub 2009 Jul 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19641492" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/*cytology/*metabolism ; Animals ; CCAAT-Enhancer-Binding Protein-beta/genetics/*metabolism ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Choristoma/metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Fibroblasts/cytology/metabolism ; Glucose/metabolism ; Humans ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes ; Myoblasts/*cytology/*metabolism ; Skin/cytology ; Transcription Factors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-24
    Description: Obesity induced in mice by high-fat feeding activates the protein kinase Cdk5 (cyclin-dependent kinase 5) in adipose tissues. This results in phosphorylation of the nuclear receptor PPARgamma (peroxisome proliferator-activated receptor gamma), a dominant regulator of adipogenesis and fat cell gene expression, at serine 273. This modification of PPARgamma does not alter its adipogenic capacity, but leads to dysregulation of a large number of genes whose expression is altered in obesity, including a reduction in the expression of the insulin-sensitizing adipokine, adiponectin. The phosphorylation of PPARgamma by Cdk5 is blocked by anti-diabetic PPARgamma ligands, such as rosiglitazone and MRL24. This inhibition works both in vivo and in vitro, and is completely independent of classical receptor transcriptional agonism. Similarly, inhibition of PPARgamma phosphorylation in obese patients by rosiglitazone is very tightly associated with the anti-diabetic effects of this drug. All these findings strongly suggest that Cdk5-mediated phosphorylation of PPARgamma may be involved in the pathogenesis of insulin-resistance, and present an opportunity for development of an improved generation of anti-diabetic drugs through PPARgamma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987584/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2987584/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Choi, Jang Hyun -- Banks, Alexander S -- Estall, Jennifer L -- Kajimura, Shingo -- Bostrom, Pontus -- Laznik, Dina -- Ruas, Jorge L -- Chalmers, Michael J -- Kamenecka, Theodore M -- Bluher, Matthias -- Griffin, Patrick R -- Spiegelman, Bruce M -- DK087853/DK/NIDDK NIH HHS/ -- DK31405/DK/NIDDK NIH HHS/ -- K99 DK087853/DK/NIDDK NIH HHS/ -- R01 GM084041/GM/NIGMS NIH HHS/ -- R01 GM084041-03/GM/NIGMS NIH HHS/ -- R01-GM084041/GM/NIGMS NIH HHS/ -- R37 DK031405/DK/NIDDK NIH HHS/ -- R37 DK031405-30/DK/NIDDK NIH HHS/ -- S10 RR027270/RR/NCRR NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-020010/MH/NIMH NIH HHS/ -- U54-MH084512/MH/NIMH NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Jul 22;466(7305):451-6. doi: 10.1038/nature09291.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology and Division of Metabolism and Chronic Disease, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20651683" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/drug effects/metabolism/physiopathology ; Amino Acid Sequence ; Animals ; Cell Line ; Cyclin-Dependent Kinase 5/*antagonists & inhibitors/genetics/metabolism ; Diabetes Mellitus, Experimental/complications/*drug therapy/metabolism ; Dietary Fats/pharmacology ; Humans ; Insulin/metabolism ; Ligands ; Mice ; Models, Molecular ; Obesity/chemically induced/complications/*metabolism/physiopathology ; PPAR gamma/agonists/*metabolism ; Phosphorylation/drug effects ; Phosphoserine/metabolism ; Protein Conformation ; Thiazolidinediones/*pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...