ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-10-13
    Description: Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene "mountains" and a much larger number of gene "hills" that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wood, Laura D -- Parsons, D Williams -- Jones, Sian -- Lin, Jimmy -- Sjoblom, Tobias -- Leary, Rebecca J -- Shen, Dong -- Boca, Simina M -- Barber, Thomas -- Ptak, Janine -- Silliman, Natalie -- Szabo, Steve -- Dezso, Zoltan -- Ustyanksky, Vadim -- Nikolskaya, Tatiana -- Nikolsky, Yuri -- Karchin, Rachel -- Wilson, Paul A -- Kaminker, Joshua S -- Zhang, Zemin -- Croshaw, Randal -- Willis, Joseph -- Dawson, Dawn -- Shipitsin, Michail -- Willson, James K V -- Sukumar, Saraswati -- Polyak, Kornelia -- Park, Ben Ho -- Pethiyagoda, Charit L -- Pant, P V Krishna -- Ballinger, Dennis G -- Sparks, Andrew B -- Hartigan, James -- Smith, Douglas R -- Suh, Erick -- Papadopoulos, Nickolas -- Buckhaults, Phillip -- Markowitz, Sanford D -- Parmigiani, Giovanni -- Kinzler, Kenneth W -- Velculescu, Victor E -- Vogelstein, Bert -- CA 43460/CA/NCI NIH HHS/ -- CA 57345/CA/NCI NIH HHS/ -- CA109274/CA/NCI NIH HHS/ -- CA112828/CA/NCI NIH HHS/ -- CA121113/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- GM070219/GM/NIGMS NIH HHS/ -- GM07309/GM/NIGMS NIH HHS/ -- P30-CA43703/CA/NCI NIH HHS/ -- RR017698/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 16;318(5853):1108-13. Epub 2007 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Center for Cancer Genetics and Therapeutics and Howard Hughes Medical Institute at Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*genetics/metabolism ; Cell Line ; Chromosome Mapping ; Colorectal Neoplasms/*genetics/metabolism ; Computational Biology ; DNA, Neoplasm ; Databases, Genetic ; Genes, Neoplasm ; Genome, Human ; Humans ; Metabolic Networks and Pathways/genetics ; Mice ; Mutation ; Neoplasm Proteins/genetics/metabolism ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-04-11
    Description: The nuclear factor kappaB (NF-kappaB) transcription factor regulates cellular stress responses and the immune response to infection. NF-kappaB activation results in oscillations in nuclear NF-kappaB abundance. To define the function of these oscillations, we treated cells with repeated short pulses of tumor necrosis factor-alpha at various intervals to mimic pulsatile inflammatory signals. At all pulse intervals that were analyzed, we observed synchronous cycles of NF-kappaB nuclear translocation. Lower frequency stimulations gave repeated full-amplitude translocations, whereas higher frequency pulses gave reduced translocation, indicating a failure to reset. Deterministic and stochastic mathematical models predicted how negative feedback loops regulate both the resetting of the system and cellular heterogeneity. Altering the stimulation intervals gave different patterns of NF-kappaB-dependent gene expression, which supports the idea that oscillation frequency has a functional role.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785900/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ashall, Louise -- Horton, Caroline A -- Nelson, David E -- Paszek, Pawel -- Harper, Claire V -- Sillitoe, Kate -- Ryan, Sheila -- Spiller, David G -- Unitt, John F -- Broomhead, David S -- Kell, Douglas B -- Rand, David A -- See, Violaine -- White, Michael R H -- BB/C007158/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C008219/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/C520471/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D010748/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E004210/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E012965/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/F005938/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0071581/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC0082191/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBC5204711/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBD0107481/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBF0059381/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0500346/Medical Research Council/United Kingdom -- G0500346(73596)/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2009 Apr 10;324(5924):242-6. doi: 10.1126/science.1164860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Cell Imaging, School of Biological Sciences, Bioscience Research Building, Crown Street, Liverpool, L69 7ZB, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19359585" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Nucleus/metabolism ; Cytoplasm/metabolism ; Feedback, Physiological ; *Gene Expression ; Humans ; I-kappa B Proteins/metabolism ; Mice ; Models, Biological ; Models, Statistical ; NF-kappa B/*metabolism ; Phosphorylation ; Recombinant Fusion Proteins/metabolism ; Stochastic Processes ; Transcription Factor RelA/*metabolism ; *Transcription, Genetic ; Transfection ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-02-19
    Description: Deregulation of Akt/protein kinase B (PKB) is implicated in the pathogenesis of cancer and diabetes. Akt/PKB activation requires the phosphorylation of Thr308 in the activation loop by the phosphoinositide-dependent kinase 1 (PDK1) and Ser473 within the carboxyl-terminal hydrophobic motif by an unknown kinase. We show that in Drosophila and human cells the target of rapamycin (TOR) kinase and its associated protein rictor are necessary for Ser473 phosphorylation and that a reduction in rictor or mammalian TOR (mTOR) expression inhibited an Akt/PKB effector. The rictor-mTOR complex directly phosphorylated Akt/PKB on Ser473 in vitro and facilitated Thr308 phosphorylation by PDK1. Rictor-mTOR may serve as a drug target in tumors that have lost the expression of PTEN, a tumor suppressor that opposes Akt/PKB activation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarbassov, D D -- Guertin, David A -- Ali, Siraj M -- Sabatini, David M -- R01 AI47389/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 18;307(5712):1098-101.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15718470" target="_blank"〉PubMed〈/a〉
    Keywords: 3-Phosphoinositide-Dependent Protein Kinases ; Adaptor Proteins, Signal Transducing ; Animals ; Carrier Proteins/*metabolism ; Cell Line ; Cell Line, Tumor ; Drosophila Proteins/*metabolism ; Drosophila melanogaster ; Enzyme Activation ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoprecipitation ; Phosphatidylinositol 3-Kinases/*metabolism ; Phosphorylation ; Protein Kinases/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proteins/metabolism ; Proto-Oncogene Proteins/*metabolism ; Proto-Oncogene Proteins c-akt ; RNA Interference ; Serine/metabolism ; TOR Serine-Threonine Kinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-02-12
    Description: Most protein phosphatases have little intrinsic substrate specificity, making selective pharmacological inhibition of specific dephosphorylation reactions a challenging problem. In a screen for small molecules that protect cells from endoplasmic reticulum (ER) stress, we identified salubrinal, a selective inhibitor of cellular complexes that dephosphorylate eukaryotic translation initiation factor 2 subunit alpha (eIF2alpha). Salubrinal also blocks eIF2alpha dephosphorylation mediated by a herpes simplex virus protein and inhibits viral replication. These results suggest that selective chemical inhibitors of eIF2alpha dephosphorylation may be useful in diseases involving ER stress or viral infection. More broadly, salubrinal demonstrates the feasibility of selective pharmacological targeting of cellular dephosphorylation events.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyce, Michael -- Bryant, Kevin F -- Jousse, Celine -- Long, Kai -- Harding, Heather P -- Scheuner, Donalyn -- Kaufman, Randal J -- Ma, Dawei -- Coen, Donald M -- Ron, David -- Yuan, Junying -- AI19838/AI/NIAID NIH HHS/ -- AI26077/AI/NIAID NIH HHS/ -- DDK42394/DK/NIDDK NIH HHS/ -- DK47119/DK/NIDDK NIH HHS/ -- ES08681/ES/NIEHS NIH HHS/ -- GM64703/GM/NIGMS NIH HHS/ -- NS35138/NS/NINDS NIH HHS/ -- R37-AG012859/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 11;307(5711):935-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15705855" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Differentiation ; Apoptosis/*drug effects ; Cell Cycle Proteins ; Cell Line ; Cinnamates/*pharmacology/toxicity ; *Cytoprotection ; Dose-Response Relationship, Drug ; Endoplasmic Reticulum/*metabolism ; Enzyme Inhibitors/pharmacology ; Eukaryotic Initiation Factor-2/*metabolism ; Genes, Reporter ; Herpesvirus 1, Human/drug effects/physiology ; Keratitis, Herpetic/drug therapy/virology ; Male ; Mice ; Oxazoles/pharmacology/toxicity ; PC12 Cells ; Phosphoprotein Phosphatases/metabolism ; Phosphorylation ; Protein Folding ; Protein Kinases/metabolism ; Protein Phosphatase 1 ; Proteins/metabolism ; Rats ; Thiourea/*analogs & derivatives/*pharmacology/toxicity ; Tunicamycin/pharmacology ; Viral Proteins/metabolism ; Virus Replication/drug effects
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2005-07-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Greene, Mark -- Schill, Kathryn -- Takahashi, Shoji -- Bateman-House, Alison -- Beauchamp, Tom -- Bok, Hilary -- Cheney, Dorothy -- Coyle, Joseph -- Deacon, Terrence -- Dennett, Daniel -- Donovan, Peter -- Flanagan, Owen -- Goldman, Steven -- Greely, Henry -- Martin, Lee -- Miller, Earl -- Mueller, Dawn -- Siegel, Andrew -- Solter, Davor -- Gearhart, John -- McKhann, Guy -- Faden, Ruth -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):385-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Philosophy, University of Delaware, Newark, DE 19716, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020716" target="_blank"〉PubMed〈/a〉
    Keywords: Advisory Committees ; Animal Experimentation/*ethics ; Animals ; Brain/anatomy & histology/physiology ; Cell Line ; *Ethics, Research ; Humans ; Mental Processes ; Moral Obligations ; *Morals ; Neurons/cytology/physiology/*transplantation ; *Primates/psychology ; Stem Cell Transplantation/*ethics ; Transplantation Chimera ; Transplantation, Heterologous/*ethics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-07-01
    Description: Axonal guidance and vascular patterning share several guidance cues, including proteins in the netrin family. We demonstrate that netrins stimulate proliferation, migration, and tube formation of human endothelial cells in vitro and that this stimulation is independent of known netrin receptors. Suppression of netrin1a messenger RNA in zebrafish inhibits vascular sprouting, implying a proangiogenic role for netrins during vertebrate development. We also show that netrins accelerate neovascularization in an in vivo model of ischemia and that they reverse neuropathy and vasculopathy in a diabetic murine model. We propose that the attractive vascular and neural guidance functions of netrins offer a unique therapeutic potential.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577078/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2577078/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Brent D -- Ii, Masaaki -- Park, Kye Won -- Suli, Arminda -- Sorensen, Lise K -- Larrieu-Lahargue, Frederic -- Urness, Lisa D -- Suh, Wonhee -- Asai, Jun -- Kock, Gerhardus A H -- Thorne, Tina -- Silver, Marcy -- Thomas, Kirk R -- Chien, Chi-Bin -- Losordo, Douglas W -- Li, Dean Y -- R01 HL068873/HL/NHLBI NIH HHS/ -- R01 HL077671/HL/NHLBI NIH HHS/ -- R01 HL077671-03/HL/NHLBI NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):640-4. Epub 2006 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City, UT 84112, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809490" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inducing Agents ; Animals ; Cell Line ; Cell Movement ; Chemotaxis ; DNA, Complementary ; Diabetic Angiopathies/therapy ; Diabetic Neuropathies/therapy ; Embryo, Nonmammalian ; Endothelial Cells/*physiology ; Endothelium, Vascular/cytology ; Genetic Therapy ; Humans ; Ischemia/drug therapy ; Mice ; Muscle, Skeletal/blood supply ; *Neovascularization, Physiologic ; Nerve Growth Factors/genetics/pharmacology/*physiology ; Neural Conduction ; Receptors, Cell Surface/physiology ; Tumor Suppressor Proteins/genetics/pharmacology/*physiology ; Vascular Endothelial Growth Factor A/therapeutic use ; Zebrafish
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2008-05-13
    Description: The recent discovery of CD4(+) T cells characterized by secretion of interleukin (IL)-17 (T(H)17 cells) and the naturally occurring regulatory FOXP3(+) CD4 T cell (nT(reg)) has had a major impact on our understanding of immune processes not readily explained by the T(H)1/T(H)2 paradigm. T(H)17 and nT(reg) cells have been implicated in the pathogenesis of human autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease and psoriasis. Our recent data and the work of others demonstrated that transforming growth factor-beta (TGF-beta) and IL-6 are responsible for the differentiation of naive mouse T cells into T(H)17 cells, and it has been proposed that IL-23 may have a critical role in stabilization of the T(H)17 phenotype. A second pathway has been discovered in which a combination of TGF-beta and IL-21 is capable of inducing differentiation of mouse T(H)17 cells in the absence of IL-6 (refs 6-8). However, TGF-beta and IL-6 are not capable of differentiating human T(H)17 cells and it has been suggested that TGF-beta may in fact suppress the generation of human T(H)17 cells. Instead, it has been recently shown that the cytokines IL-1beta, IL-6 and IL-23 are capable of driving IL-17 secretion in short-term CD4(+) T cell lines isolated from human peripheral blood, although the factors required for differentiation of naive human CD4 to T(H)17 cells are still unknown. Here we confirm that whereas IL-1beta and IL-6 induce IL-17A secretion from human central memory CD4(+) T cells, TGF-beta and IL-21 uniquely promote the differentiation of human naive CD4(+) T cells into T(H)17 cells accompanied by expression of the transcription factor RORC2. These data will allow the investigation of this new population of T(H)17 cells in human inflammatory disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760130/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760130/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yang, Li -- Anderson, David E -- Baecher-Allan, Clare -- Hastings, William D -- Bettelli, Estelle -- Oukka, Mohamed -- Kuchroo, Vijay K -- Hafler, David A -- P01 AI039671/AI/NIAID NIH HHS/ -- P01 AI039671-14/AI/NIAID NIH HHS/ -- P01 NS038037/NS/NINDS NIH HHS/ -- P01 NS038037-080006/NS/NINDS NIH HHS/ -- R01 AI073542/AI/NIAID NIH HHS/ -- R01 AI073542-01/AI/NIAID NIH HHS/ -- R01 AI073542-02/AI/NIAID NIH HHS/ -- R01 AI073542-03/AI/NIAID NIH HHS/ -- R37 NS024247/NS/NINDS NIH HHS/ -- R37 NS024247-20/NS/NINDS NIH HHS/ -- U19 AI070352/AI/NIAID NIH HHS/ -- U19 AI070352-03/AI/NIAID NIH HHS/ -- England -- Nature. 2008 Jul 17;454(7202):350-2. doi: 10.1038/nature07021. Epub 2008 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18469800" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Differentiation ; Cell Line ; Cells, Cultured ; Gene Expression Regulation ; Humans ; Interleukin-17/metabolism ; Interleukins/*metabolism ; Nuclear Receptor Subfamily 1, Group F, Member 3 ; T-Lymphocytes, Helper-Inducer/*cytology/*metabolism ; Transcription Factors/genetics/metabolism ; Transforming Growth Factor beta1/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-11-26
    Description: Mutations in the enzyme cytosolic isocitrate dehydrogenase 1 (IDH1) are a common feature of a major subset of primary human brain cancers. These mutations occur at a single amino acid residue of the IDH1 active site, resulting in loss of the enzyme's ability to catalyse conversion of isocitrate to alpha-ketoglutarate. However, only a single copy of the gene is mutated in tumours, raising the possibility that the mutations do not result in a simple loss of function. Here we show that cancer-associated IDH1 mutations result in a new ability of the enzyme to catalyse the NADPH-dependent reduction of alpha-ketoglutarate to R(-)-2-hydroxyglutarate (2HG). Structural studies demonstrate that when arginine 132 is mutated to histidine, residues in the active site are shifted to produce structural changes consistent with reduced oxidative decarboxylation of isocitrate and acquisition of the ability to convert alpha-ketoglutarate to 2HG. Excess accumulation of 2HG has been shown to lead to an elevated risk of malignant brain tumours in patients with inborn errors of 2HG metabolism. Similarly, in human malignant gliomas harbouring IDH1 mutations, we find markedly elevated levels of 2HG. These data demonstrate that the IDH1 mutations result in production of the onco-metabolite 2HG, and indicate that the excess 2HG which accumulates in vivo contributes to the formation and malignant progression of gliomas.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818760/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dang, Lenny -- White, David W -- Gross, Stefan -- Bennett, Bryson D -- Bittinger, Mark A -- Driggers, Edward M -- Fantin, Valeria R -- Jang, Hyun Gyung -- Jin, Shengfang -- Keenan, Marie C -- Marks, Kevin M -- Prins, Robert M -- Ward, Patrick S -- Yen, Katharine E -- Liau, Linda M -- Rabinowitz, Joshua D -- Cantley, Lewis C -- Thompson, Craig B -- Vander Heiden, Matthew G -- Su, Shinsan M -- P01 CA104838/CA/NCI NIH HHS/ -- P01 CA104838-05/CA/NCI NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- R01 CA105463-06/CA/NCI NIH HHS/ -- R21 CA128620/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 10;462(7274):739-44. doi: 10.1038/nature08617. Epub .〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Agios Pharmaceuticals, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19935646" target="_blank"〉PubMed〈/a〉
    Keywords: Arginine/genetics ; Brain Neoplasms/*genetics/*metabolism/pathology ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Disease Progression ; Enzyme Assays ; Glioma/genetics/metabolism/pathology ; Glutarates/*metabolism ; Histidine/genetics/metabolism ; Humans ; Isocitrate Dehydrogenase/*genetics/*metabolism ; Ketoglutaric Acids/metabolism ; Models, Molecular ; Mutant Proteins/*genetics/*metabolism ; Mutation/genetics ; Protein Conformation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-08-04
    Description: Polymerization of actin filaments directed by the actin-related protein (Arp)2/3 complex supports many types of cellular movements. However, questions remain regarding the relative contributions of Arp2/3 complex versus other mechanisms of actin filament nucleation to processes such as path finding by neuronal growth cones; this is because of the lack of simple methods to inhibit Arp2/3 complex reversibly in living cells. Here we describe two classes of small molecules that bind to different sites on the Arp2/3 complex and inhibit its ability to nucleate actin filaments. CK-0944636 binds between Arp2 and Arp3, where it appears to block movement of Arp2 and Arp3 into their active conformation. CK-0993548 inserts into the hydrophobic core of Arp3 and alters its conformation. Both classes of compounds inhibit formation of actin filament comet tails by Listeria and podosomes by monocytes. Two inhibitors with different mechanisms of action provide a powerful approach for studying the Arp2/3 complex in living cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780427/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nolen, B J -- Tomasevic, N -- Russell, A -- Pierce, D W -- Jia, Z -- McCormick, C D -- Hartman, J -- Sakowicz, R -- Pollard, T D -- F32 GM074374-02/GM/NIGMS NIH HHS/ -- GM-066311/GM/NIGMS NIH HHS/ -- GM074374-02/GM/NIGMS NIH HHS/ -- P01 GM066311/GM/NIGMS NIH HHS/ -- P01 GM066311-01A1/GM/NIGMS NIH HHS/ -- P30 EB009998/EB/NIBIB NIH HHS/ -- England -- Nature. 2009 Aug 20;460(7258):1031-4. doi: 10.1038/nature08231. Epub 2009 Aug 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19648907" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/metabolism ; Actin-Related Protein 2/antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 2-3 Complex/*antagonists & inhibitors/chemistry/metabolism ; Actin-Related Protein 3/antagonists & inhibitors/chemistry/metabolism ; Actins/chemistry/metabolism ; Animals ; Biopolymers/chemistry/metabolism ; Cattle ; Cell Line ; Crystallography, X-Ray ; Humans ; Hydrophobic and Hydrophilic Interactions ; Indoles/classification/metabolism/pharmacology ; Listeria/physiology ; Models, Molecular ; Monocytes/immunology ; Protein Conformation/drug effects ; Schizosaccharomyces ; Thiazoles/chemistry/classification/metabolism/pharmacology ; Thiophenes/classification/metabolism/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-03-20
    Description: The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression, which in turn is driven by promoters, enhancers, insulators and other cis-regulatory DNA sequences for each gene, the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters, enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast, enhancers are marked with highly cell-type-specific histone modification patterns, strongly correlate to cell-type-specific gene expression programs on a global scale, and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome, significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910248/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Heintzman, Nathaniel D -- Hon, Gary C -- Hawkins, R David -- Kheradpour, Pouya -- Stark, Alexander -- Harp, Lindsey F -- Ye, Zhen -- Lee, Leonard K -- Stuart, Rhona K -- Ching, Christina W -- Ching, Keith A -- Antosiewicz-Bourget, Jessica E -- Liu, Hui -- Zhang, Xinmin -- Green, Roland D -- Lobanenkov, Victor V -- Stewart, Ron -- Thomson, James A -- Crawford, Gregory E -- Kellis, Manolis -- Ren, Bing -- R01 HG004037/HG/NHGRI NIH HHS/ -- R01 HG004037-02/HG/NHGRI NIH HHS/ -- U01 HG003151/HG/NHGRI NIH HHS/ -- U01 HG003151-01/HG/NHGRI NIH HHS/ -- U01 HG003151-01S1/HG/NHGRI NIH HHS/ -- U01 HG003151-02/HG/NHGRI NIH HHS/ -- U01 HG003151-03/HG/NHGRI NIH HHS/ -- U01 HG003151-03S1/HG/NHGRI NIH HHS/ -- U01 HG003151-03S2/HG/NHGRI NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2009 May 7;459(7243):108-12. doi: 10.1038/nature07829. Epub 2009 Mar 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ludwig Institute for Cancer Research, UCSD School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0653, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19295514" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Cell Line ; *Cell Physiological Phenomena ; Chromatin/genetics ; *Gene Expression Regulation ; Genome, Human/genetics ; HeLa Cells ; Histones/*metabolism ; Humans ; K562 Cells ; Promoter Regions, Genetic/genetics ; Transcription Factors/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...