ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-27
    Description: Tumor manipulation of host immunity is important for tumor survival and invasion. Many cancers secrete CCL21, a chemoattractant for various leukocytes and lymphoid tissue inducer cells, which drive lymphoid neogenesis. CCL21 expression by melanoma tumors in mice was associated with an immunotolerant microenvironment, which included the induction of lymphoid-like reticular stromal networks, an altered cytokine milieu, and the recruitment of regulatory leukocyte populations. In contrast, CCL21-deficient tumors induced antigen-specific immunity. CCL21-mediated immune tolerance was dependent on host rather than tumor expression of the CCL21 receptor, CCR7, and could protect distant, coimplanted CCL21-deficient tumors and even nonsyngeneic allografts from rejection. We suggest that by altering the tumor microenvironment, CCL21-secreting tumors shift the host immune response from immunogenic to tolerogenic, which facilitates tumor progression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shields, Jacqueline D -- Kourtis, Iraklis C -- Tomei, Alice A -- Roberts, Joanna M -- Swartz, Melody A -- New York, N.Y. -- Science. 2010 May 7;328(5979):749-52. doi: 10.1126/science.1185837. Epub 2010 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20339029" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/immunology ; CD8-Positive T-Lymphocytes/immunology ; Cell Line, Tumor ; Chemokine CCL21/*metabolism ; Cytokines/metabolism ; Disease Progression ; Female ; Immune Tolerance ; Lymph Nodes/immunology ; Lymphoid Tissue/*immunology/pathology ; Melanoma, Experimental/*immunology/*pathology ; Mice ; Mice, Inbred C57BL ; Neoplasm Transplantation ; RNA Interference ; Receptors, CCR7/metabolism ; Signal Transduction ; Stromal Cells/*immunology/pathology ; T-Lymphocytes/immunology ; T-Lymphocytes, Regulatory/immunology ; *Tumor Escape
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-23
    Description: The mechanisms by which quiescent cells, including adult stem cells, preserve their ability to resume proliferation after weeks or even years of cell cycle arrest are not known. We report that reversibility is not a passive property of nondividing cells, because enforced cell cycle arrest for a period as brief as 4 days initiates spontaneous, premature, and irreversible senescence. Increased expression of the gene encoding the basic helix-loop-helix protein HES1 was required for quiescence to be reversible, because HES1 prevented both premature senescence and inappropriate differentiation in quiescent fibroblasts. In some human tumors, the HES1 pathway was activated, which allowed these cells to evade differentiation and irreversible cell cycle arrest. We conclude that HES1 safeguards against irreversible cell cycle exit both during normal cellular quiescence and pathologically in the setting of tumorigenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721335/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2721335/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sang, Liyun -- Coller, Hilary A -- Roberts, James M -- P50 GM071508/GM/NIGMS NIH HHS/ -- P50 GM071508-05/GM/NIGMS NIH HHS/ -- R01 CA118043/CA/NCI NIH HHS/ -- R01 CA118043-03/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1095-100. doi: 10.1126/science.1155998.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719287" target="_blank"〉PubMed〈/a〉
    Keywords: Basic Helix-Loop-Helix Transcription Factors/genetics/*metabolism ; Cell Aging ; *Cell Cycle ; Cell Differentiation ; Cell Line ; Cell Line, Tumor ; *Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p21/metabolism ; Fibroblasts/*cytology/metabolism ; Homeodomain Proteins/genetics/*metabolism ; Humans ; Muscle Development ; MyoD Protein/metabolism ; Receptors, Notch/metabolism ; Recombinant Fusion Proteins/metabolism ; Repressor Proteins/genetics/*metabolism ; Rhabdomyosarcoma/metabolism/pathology ; Signal Transduction ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-23
    Description: The development of effective pharmacological inhibitors of multidomain scaffold proteins, notably transcription factors, is a particularly challenging problem. In part, this is because many small-molecule antagonists disrupt the activity of only one domain in the target protein. We devised a chemical strategy that promotes ligand-dependent target protein degradation using as an example the transcriptional coactivator BRD4, a protein critical for cancer cell growth and survival. We appended a competitive antagonist of BET bromodomains to a phthalimide moiety to hijack the cereblon E3 ubiquitin ligase complex. The resultant compound, dBET1, induced highly selective cereblon-dependent BET protein degradation in vitro and in vivo and delayed leukemia progression in mice. A second series of probes resulted in selective degradation of the cytosolic protein FKBP12. This chemical strategy for controlling target protein stability may have implications for therapeutically targeting previously intractable proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Winter, Georg E -- Buckley, Dennis L -- Paulk, Joshiawa -- Roberts, Justin M -- Souza, Amanda -- Dhe-Paganon, Sirano -- Bradner, James E -- P01 CA066996/CA/NCI NIH HHS/ -- P01-CA066996/CA/NCI NIH HHS/ -- R01-CA176745/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 19;348(6241):1376-81. doi: 10.1126/science.aab1433. Epub 2015 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. james_bradner@dfci.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25999370" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Azepines/chemistry/*pharmacology/therapeutic use ; Cell Line, Tumor ; Crystallography, X-Ray ; Disease Models, Animal ; *Drug Design ; Leukemia, Promyelocytic, Acute/drug therapy ; Ligands ; Mice ; Molecular Targeted Therapy ; Nuclear Proteins/antagonists & inhibitors/chemistry/*metabolism ; Peptide Hydrolases/*metabolism ; Phthalimides/*chemistry ; Protein Stability/drug effects ; Protein Structure, Tertiary ; Proteolysis/*drug effects ; Tacrolimus Binding Protein 1A/metabolism ; Thalidomide/*analogs & derivatives/chemistry/pharmacology/therapeutic use ; Transcription Factors/antagonists & inhibitors/chemistry/*metabolism ; Ubiquitin-Protein Ligases/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...