ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-01-07
    Description: The inositol 1,4,5-trisphosphate (IP3) receptor is a calcium ion channel involved in the release of free Ca2+ from intracellular stores. For analysis of the role of IP3-induced Ca2+ release (IICR) on patterning of the embryonic body, monoclonal antibodies that inhibit IICR were produced. Injection of these blocking antibodies into the ventral part of early Xenopus embryos induced modest dorsal differentiation. A close correlation between IICR blocking potencies and ectopic dorsal axis induction frequency suggests that an active IP3-Ca2+ signal may participate in the modulation of ventral differentiation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kume, S -- Muto, A -- Inoue, T -- Suga, K -- Okano, H -- Mikoshiba, K -- New York, N.Y. -- Science. 1997 Dec 12;278(5345):1940-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Mikoshiba Calciosignal Net Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Corporation (JST), 2-9-3 Shimo-Meguro, Meguro-ku, Tokyo 153, Japan. skume@ims.u-tokyo.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9395395" target="_blank"〉PubMed〈/a〉
    Keywords: Activins ; Animals ; Antibodies, Blocking ; Antibodies, Monoclonal ; *Body Patterning ; Calcium/*metabolism ; Calcium Channels/immunology/*metabolism ; Cell Differentiation ; Embryo, Nonmammalian/*metabolism ; Embryonic Development ; Embryonic Induction ; Fibroblast Growth Factor 2/pharmacology ; Gastrula/metabolism ; Gene Expression Regulation, Developmental ; Inhibins/pharmacology ; Inositol 1,4,5-Trisphosphate/*metabolism ; Inositol 1,4,5-Trisphosphate Receptors ; Receptors, Cytoplasmic and Nuclear/immunology/*metabolism ; *Signal Transduction ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-02-26
    Description: Loss of imprinting (LOI) of the insulin-like growth factor II gene (IGF2) is an epigenetic alteration that results in a modest increase in IGF2 expression, and it is present in the normal colonic mucosa of about 30% of patients with colorectal cancer. To investigate its role in intestinal tumorigenesis, we created a mouse model of Igf2 LOI by crossing female H19+/- mice with male Apc+/Min mice. Mice with LOI developed twice as many intestinal tumors as did control littermates. Notably, these mice also showed a shift toward a less differentiated normal intestinal epithelium, reflected by an increase in crypt length and increased staining with progenitor cell markers. A similar shift in differentiation was seen in the normal colonic mucosa of humans with LOI. Thus, altered maturation of nonneoplastic tissue may be one mechanism by which epigenetic changes affect cancer risk.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sakatani, Takashi -- Kaneda, Atsushi -- Iacobuzio-Donahue, Christine A -- Carter, Mark G -- de Boom Witzel, Sten -- Okano, Hideyuki -- Ko, Minoru S H -- Ohlsson, Rolf -- Longo, Dan L -- Feinberg, Andrew P -- K08CA106610/CA/NCI NIH HHS/ -- R01CA65145/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2005 Mar 25;307(5717):1976-8. Epub 2005 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731405" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/etiology/pathology ; Animals ; Apoptosis ; Cell Differentiation ; Cell Proliferation ; Colon/cytology/metabolism ; Colonic Neoplasms/etiology/pathology ; Enterocytes/*cytology/metabolism ; Ephrin-B1/analysis ; Epigenesis, Genetic ; Female ; *Genomic Imprinting ; Humans ; Insulin-Like Growth Factor II/*genetics/*metabolism ; Intestinal Mucosa/*cytology/metabolism ; Intestinal Neoplasms/*etiology/pathology ; Intestines/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Microfilament Proteins/analysis ; Nerve Tissue Proteins/analysis ; Nuclear Proteins/analysis ; RNA, Long Noncoding ; RNA, Untranslated/genetics ; RNA-Binding Proteins/analysis ; Stem Cells/cytology ; Transcription Factors/analysis ; Twist Transcription Factor
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-07
    Description: Semaphorin 3A (Sema3A) is a diffusible axonal chemorepellent that has an important role in axon guidance. Previous studies have demonstrated that Sema3a(-/-) mice have multiple developmental defects due to abnormal neuronal innervations. Here we show in mice that Sema3A is abundantly expressed in bone, and cell-based assays showed that Sema3A affected osteoblast differentiation in a cell-autonomous fashion. Accordingly, Sema3a(-/-) mice had a low bone mass due to decreased bone formation. However, osteoblast-specific Sema3A-deficient mice (Sema3acol1(-/-) and Sema3aosx(-/-) mice) had normal bone mass, even though the expression of Sema3A in bone was substantially decreased. In contrast, mice lacking Sema3A in neurons (Sema3asynapsin(-/-) and Sema3anestin(-/-) mice) had low bone mass, similar to Sema3a(-/-) mice, indicating that neuron-derived Sema3A is responsible for the observed bone abnormalities independent of the local effect of Sema3A in bone. Indeed, the number of sensory innervations of trabecular bone was significantly decreased in Sema3asynapsin(-/-) mice, whereas sympathetic innervations of trabecular bone were unchanged. Moreover, ablating sensory nerves decreased bone mass in wild-type mice, whereas it did not reduce the low bone mass in Sema3anestin(-/-) mice further, supporting the essential role of the sensory nervous system in normal bone homeostasis. Finally, neuronal abnormalities in Sema3a(-/-) mice, such as olfactory development, were identified in Sema3asynasin(-/-) mice, demonstrating that neuron-derived Sema3A contributes to the abnormal neural development seen in Sema3a(-/-) mice, and indicating that Sema3A produced in neurons regulates neural development in an autocrine manner. This study demonstrates that Sema3A regulates bone remodelling indirectly by modulating sensory nerve development, but not directly by acting on osteoblasts.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fukuda, Toru -- Takeda, Shu -- Xu, Ren -- Ochi, Hiroki -- Sunamura, Satoko -- Sato, Tsuyoshi -- Shibata, Shinsuke -- Yoshida, Yutaka -- Gu, Zirong -- Kimura, Ayako -- Ma, Chengshan -- Xu, Cheng -- Bando, Waka -- Fujita, Koji -- Shinomiya, Kenichi -- Hirai, Takashi -- Asou, Yoshinori -- Enomoto, Mitsuhiro -- Okano, Hideyuki -- Okawa, Atsushi -- Itoh, Hiroshi -- NS065048/NS/NINDS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):490-3. doi: 10.1038/nature12115. Epub 2013 May 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, School of Medicine, Keio University, Shinanomachi 35, Shinjyuku-ku, Tokyo 160-8582, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23644455" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Bone Remodeling ; Bone and Bones/anatomy & histology/*innervation/*metabolism ; Cell Differentiation ; Cells, Cultured ; Female ; Male ; Mice ; Organ Size ; Osteoblasts/cytology/metabolism ; Semaphorin-3A/deficiency/genetics/*metabolism ; Sensory Receptor Cells/cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...