ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Prohibitin, a novel intracellular antiproliferative protein, blocks entry into the S phase of the cell division cycle when its mRNA is microinjected into normal fibroblasts or HeLa cells. To learn more about the interaction between prohibitin and the cell cycle, we studied the effect of microinjecting prohibitin mRNA at different points during the transition from G0 to S phase and analyzed prohibitin mRNA and protein levels in different parts of the cell cycle. The antiproliferative activity of microinjected prohibitin mRNA is high in G0/G1 and falls as cells approach S phase. Prohibitin mRNA and protein levels are high in G1, fall with S phase, rise again in G2, and fall in M. Together, these findings suggest that endogenous prohibitin contributes to the control of the G1 to S transition in cycling cells in a complex manner, which involves both a transcriptional and posttranslational mechanism. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In the murine cell line LBRM-331A5, phytohemagglutinin (PHA) induces secretion of the T cell growth factor interleukin 2 (IL2). IL1 augments PHA-induced IL2 production. In this cell line, PHA stimulates a number of biochemical changes including phospholipid hydrolysis, increases in cytosolic free calcium ([Ca2+]i), membrane hyperpolarization, cytosolic alkalinization, and tyrosine phosphorylation of specific substrates. Using LBRM cells, we have studied the interrelationship between these events and the secretion of IL2. Increases in [Ca2+]i triggered by PHA or following addition of ionomycin result in membrane hyperpolarization but are not required for PHA-induced cytosolic alkalinization or tyrosine phosphorylation. Addition of IL1 to PHA-stimulated cells did not affect any of the biochemical parameters, although it significantly augmented PHA-induced IL2 secretion. Increasing [Ca2+]i with ionomycin did not trigger IL2 secretion, increases in cytosolic pH, or tyrosine phosphorylation in the presence or absence of IL1. Preventing increases in cytosolic pH did not alter PHA-induced changes [Ca2+]i in or membrane potential. These data are compatible with PHA including activation of phospholipase C and production of inositol phosphates resulting in both release of Ca2+ from internal stores and transmembrane uptake of Ca2+ as well as activation of protein kinase C. However, unlike other growth factor or mitogen-stimulated systems, the changes stimulated by PHA and IL1 in LBRM cells including IL2 secretion are not regulated by a pertussis toxin-sensitive G protein.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...