ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: glycopeptides ; liver cells ; malignancy ; malignant transformation ; regression ; surface glycoproteins ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Normal liver cells, Zajdela's hepatoma cells, and regressing hepatoma cells were metabolically labeled with either radioactive glucosamine or mannose. Glycopeptides obtained by exhaustive pronase digestion of these cells were compared after fractionation by gel filtration on Bio-Gel P-6.Chemical analysis, affinity chromatography on immobilized lectins, alkaline treatment, and susceptibility toward endo-β-N-acetylglucosaminidase and tunica-mycin revealed dramatic changes in the glycopeptide patterns of transformed cells during the recovery of normal phenotype.The most prominent feature was the presence on the surface of hepatoma cells of a large glycopeptide, which was absent from normal liver cells and disappeared almost completely during the regression of hepatoma cells. This large glycopeptide had a Mr of 70,000, contained essentially O-glycosidically linked glycan chains, and did not result from a hypersialylation.N-glycosidically linked glycopeptides, high-mannose, and complex-type oligosaccharides were present in distinct proportions according to the differentiation state. Transformation of liver cells led to a reduction of high-mannose type oligosaccharides and an increase in the degree of branching of complex-type oligosaccharides. In addition, “bisected” glycopeptides were present only on hepatoma cells. The pattern of N-linked glycopeptides of normal liver cells was recovered during the regression of hepatoma cells.The origin of glycopeptide differences between normal and transformed cells and the evidence of a relation between carbohydrate changes, in particular the appearance of a large glycopeptide, and tumorigenicity are discussed.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 18 (1982), S. 245-260 
    ISSN: 0730-2312
    Keywords: hepatoma cells ; cell surface components ; membrane glycoproteins ; lectin receptor ; sialoglycoproteins ; plasma membrane glycoproteins ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A major cell surface sialoglycoprotein with Concanavalin A receptor activity has been isolated from rat Zajdela ascites hepatoma cells.The sialic acid residues of the plasma membrane glycoproteins were specifically labeled by oxidation with NaIO4 followed by reduction with NaB3H4. Surface-labeled glycoproteins were released by short incubations with TPCK-trypsin at 37°C and then separated by gel filtration on Sepharose 6B column. The predominantly labeled fraction, GP II2, was then purified by chromatography on DEAE-cellulose equilibrated with 0.05 M phosphate buffer, pH 7.5, and eluted with increasing molarities of NaCl. It was shown to be homogeneous by protein and carbohydrate staining on SDS-polyacrylamide gels, isoelectric focusing, rechromatography on DEAE-cellulose and immunoelectrophoresis. It has an apparent molecular weight of 110,000 daltons.The location of GP II2on the cell surface was confirmed by the fact that it could be labeled metabolically with, D-(3H) glucosamine and externally through the nonpenetrating periodate-NaB3H4 system.GP II2could not be removed from the cell surface by high salt concentrations, chelator, or chaotropic agents but was released from the membrane by detergents. This suggests that GP II2could be an integral protein.Analysis of the carbohydrate composition of GP II2 revealed galactose, N-acetylglucosamine, N-acetylgalactosamine, and sialic acid as major constituents and mannose as a minor one. This suggests that it contains carbohydrate chains both O- and N-linked to the polypeptide chain, most of them being O-linked.Finally, GP II2has a potent Concanavalin A receptor activity. It inhibits the interaction between Concanavalin A and hepatoma cells and suppresses its effects on hepatoma cell proliferation.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...