ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (2)
  • 1
    ISSN: 0730-2312
    Keywords: mitogen activated protein kinases ; heat shock ; TNF-α ; small heat-shock proteins ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The activation of MAPKAP kinase 2 was investigated under heat-shock conditions in mouse Ehrlich ascites tumor cells and after treatment of human MO7 cells with tumor necrosis factor-α (TNF-α). MAPKAP kinase 2 activity was determined using the small heat-shock proteins (sHsps) Hsp25 and Hsp27 as substrates. In both cell types, about a threefold increase in MAPKAP kinase 2 activity could be detected in a time interval of about 10-15 min after stimulation either by heat shock or TNF-α. Phosphorylation of MAPKAP kinase 2, but not the level of MAPKAP kinase 2 mRNA, was increased after heat shock in EAT cells. It is further shown that activation of MAPKAP kinase 2 in MO7 cells is accompanied by increased MAP kinase activity. These data strongly suggest that increased phosphorylation of the sHsps after heat shock or TNF-α treatment results from phosphorylation by MAPKAP kinase 2, which itself is activated by phosphorylation through MAP kinases. Hence, we demonstrate that MAPKAP kinase 2 is responsible not only for phosphorylation of sHsps in vitro but also in vivo. The findings link sHsp phosphorylation to the MAP kinase cascade, explaining the early phosphorylation of sHsp that is stimulated by a variety of inducers such as mitogens, phorbol esters, thrombin, calcium ionophores, and heat shock.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: small heat shock proteins ; TNFα ; phosphorylation mutant ; SB203580 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The role of murine Hsp25 phosphorylation in the protection mediated by this protein against TNFα- or H2O2-mediated cytotoxicity was investigated in L929 cell lines expressing wild type (wt-) or nonphosphorylatable (mt-) Hsp25. We show that mt-Hsp25, in which the phosphorylation sites, serines 15 and 86, were replaced by alanines, is still efficient in decreasing intracellular reactive oxygen species levels and in raising glutathione cellular content, leading the protective activity of mt-Hsp25 against oxidative stress to be identical to that of wt-Hsp25. To independently investigate the role of Hsp25 phosphorylation, we blocked TNFα-induced phosphorylation of wt-Hsp25 using SB203580, a specific inhibitor of the P38 MAP kinase. This treatment did not abolish the protective activity of Hsp25 against TNFα. The pattern of Hsp25 oligomerization was also analyzed, showing mt-Hsp25 to constitutively display large native sizes, as does wt-Hsp25 after TNFα treatment in the presence of SB203580. Our results, therefore, are consistent with the possibility that the hyperaggregated form of Hsp25 is responsible for the protective activity against oxidative stress and that the phosphorylation of serines 15 and/or 86 by interfering with this structural reorganization, may lead to the inactivation of Hsp25 protective activity. J. Cell. Biochem. 69:436-452, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...