ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0886-1544
    Keywords: 2,5-hexanedione ; neurofilament ; slow axonal transport ; neurofilamentous axonopathy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The neurotoxicant 2,5-hexanedione (HD) causes the accumulation of neurofilaments in the distal axon and an acceleration of neurofilament transport proximal to the site of their accumulation. It has been proposed that the acceleration of transport is due to the direct reaction of HD with neurofilament proteins and, conversely, that this acceleration is a secondary response of the axon to injury. The objective of this study was to determine whether the response of axons to HD intoxication includes acceleration of neurofilament transport. Pulse labeling was used to analyze neurofilament transport in age-matched rats exposed to HD or PBS. The animals receiving HD were exposed either throughout the period of radiolabel transport, or prior to the pulse labeling of neurofilament proteins. If acceleration of the rate of neurofilament transport was due to the direct reaction of HD with proteins, then neurofilaments synthesized after the exposure period should travel at control rates, since these proteins would not have been exposed to the toxicant. After 28 days of transport, optic nerve proteins were examined using SDS-PAGE, fluorography, and computerized densitometry. In both HD-treated groups, neurofilament transport was accelerated relative to age-matched control animals. In addition, the amount of NFH was decreased relative to other neurofilament subunits. The combination of accelerated transport and a diminished proportion of NFH is similar to the observations of neurofilament axonal transport during growth and development. These observations suggest that this persistent, secondary effect is a reparative response to injury that recapitulates axonal growth and development. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 155 (1993), S. 171-178 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Previously we showed that CHO cell growth is arrested in the G1 or G0 phase within 24 h after the biosynthesis of mevalonic acid is blocked. The growth-limiting factor under these conditions appeared to be dolichyl phosphate or one of its glycosylated derivatives with consequent decrease in the synthesis of N-linked glycoproteins (Doyle, J.W., and A.A. Kandutsch, 1988, J. Cell Physiol. 137:133-140; Kabakoff, B., J.W. Doyle, and A.A. Kandutsch, 1990, Arch. Biochem. Biophys. 276:382-389). We show herein that cell surface glycoproteins are depleted in the inhibited cultures and that growth arrest is delayed when supraphysiological concentrations of insulin, insulin-like growth factor-1 (IGF-1) and bFGF are added to the culture medium. Apparently an elevated level of a growth factor increases the length of time during which a threshold level of occupied receptor is maintained as the number of glycosylated receptor molecules declines. The results support the idea that cellular levels of dolichyl phosphate and its derivatives may limit cell division by controlling the numbers of functional receptors for growth factors and of other glycoproteins on the cell surface. © 1993 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Philadelphia : Wiley-Blackwell
    Journal of Cellular and Comparative Physiology 65 (1965), S. 271-276 
    ISSN: 0095-9898
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Studies of reduced CO2 production by starved yeast cells were carried out to localize the site limiting this process and responsible for a greater production by irradiated cells. Cell-free extracts prepared before and after starvation of cells, and from irradiated and unirradiated cells, showed similar hexokinase activity and produced similar amounts of CO2. These results demonstrated that rate limiting glycolytic enzymes did not decay during starvation, were not induced during a lag period in CO2 production which could be overcome by glucose incubation, and were not responsible for differences in CO2 production between irradiated and unirradiated cells. Possible limiting factors involved in these differences include glucose transport as a consequence of differential decay during starvation, restricted cofactor synthesis and an enzymic binding or compartmentalization.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 54 (1933), S. 477-491 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The mitochondria in the male germ cells of Sciara exhibit peculiarities as regards both morphological characteristics and distribution. In form. they show superficial similarity with those of some of the scorpions, while their distribution may be peculiar to the genus and depend on unusual meiotic divisions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: assembly of type I collagen ; COOH-terminal propeptide ; pesin-resistant heterotrimers ; disulfide bonds ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-α2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-α1(I). Pro-α2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-α1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-α2(I) chain with pro-α1(I). Pro-α2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-α1(I). Therefore, disruption of both pro-α2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation. J.Cell. Biochem. 71:233-242, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: assembly of type I collagen ; COOH-terminal propeptide ; pepsin-resistant heterotrimers ; interspecies collagen molecule ; thermal stability ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Procollagen (Type I) contains a noncollagenous COOH-terminal propeptide (C-propeptide) hypothesized to be important in directing chain association and alignment during assembly. We previously expressed human pro-α2(I) cDNA in rat liver epithelial cells, W8, that produce only pro-α1(I) trimer collagen (Lim et al. [1994] MatrixBiol. 14: 21-30). In the resulting cell lines, α2(I) assembled with α1(I) forming heterotrimers. Using this cell system, we investigated the importance of the COOH-terminal propeptide sequence of the pro-α2(I) chain for normal assembly of type I collagen. Full-length human pro-α2(I) cDNA was cloned into expression vectors with a premature stop signal eliminating the final 10 amino acids. No triple-helical molecules containing α2(I) were detected in transfected W8 cells, although pro-α2(I) mRNA was detected. Additional protein analysis demonstrated that these cells synthesize small amounts of truncated pro-α2(I) chains detected by immunoprecipitation with a pro-α2(I) antibody. In addition, since the human-rat collagen was less thermostable than normal intraspecies collagen, wild-type and C-terminal truncated mouse cDNAs were expressed in mouse D2 cells, which produced only type I trimers. Results from both systems were consistent, suggesting that the last 10 amino acid residues of the pro-α2(I) chain are important for formation of stable type I collagen. J. Cell. Biochem. 71:216-232, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 93 (1977), S. 197-203 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In a survey of the expression on cultured mouse cells of the cell surface antigen known as nervous system antigen-3 (NS-3), it was found that RAG, a renal adenocarcinoma line, expressed that antigen. It was also observed that 3T3, a fibroblast line of unknown tissue origin, expressed NS-3. Cells of these two lines were hybridized with cells of two mouse L cell lines that did not express NS-3. Four hybrid clones were tested for both the 3T3 × L cell cross and the RAG × L cell cross, and all the hybrids were found to be NS-3 positive. All the hybrids had at least 40% as much activity as the NS-3 positive parent. Of the four parental mouse cell lines used, only 3T3 expressed Thy-1.2 antigen on the cell surface. In contrast to the continued expression of NS-3 on hybrid cells, Thy-1.2 antigen was not detectable on two clones of 3T3 × L cell hybrids that were tested.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 137 (1988), S. 133-140 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In order to investigate a requirement for isoprenoid compounds in the cell cycle, DNA synthesis was examined in cultured Chinese hamster ovary cells in which mevalonate biosynthesis was blocked with mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Treatment of exponentially-growing cultures with mevinolin led to a decline in DNA synthesis and cell cycle arrest in G1. Synchronous DNA synthesis and cell division could be restored in the arrested cultures, in the absence of exogenous mevalonate, by removing the inhibitor from the culture thereby allowing expression of an induced level of HMG-CoA reductase. In order to quantitate the mevalonate requirement for entry into S phase, recovery of DNA synthesis was made dependent upon added mevalonate by preventing the induction of the enzyme using 25-hydroxycholesterol, a specific repressor of HMG-CoA reductase synthesis. When cultures were treated with both inhibitors, optimal recovery of DNA synthesis was obtained with 200 μg/ml mevalonate following an 8 h lag, whereas a progressively longer lag-time was found with lower concentrations of mevalonate. Exogenous dolichol, ubiquinone, or isopentenyladenine had no effect on the arrest or recovery of DNA synthesis. Cholesterol was required during the arrest incubation for cell viability, but was not sufficient for recovery in the absence of mevalonate. The recovery of DNA synthesis by 200 μg/ml mevalonate, which was maximal 14-16 h after the addition of mevalonate, only required that the mevalonate be present for the first 4 h, whereas more than an 8-h incubation was required for maximal recovery with 25 μg/ml mevalonate. Maximal recovery at either concentration of mevalonate was achieved after approximately 400 fmol mevalonate/μg protein was incorporated into non-saponifiable lipids. This quantity represents approximately 0.1% of the mevalonate required for the synthesis of total cellular isoprenoid compounds. The results indicate that production of a quantitatively minor product(s) of mevalonate metabolism is required during the first 4 h following release of the block before other cellular events necessary for entry into S phase can occur.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Philadelphia : Wiley-Blackwell
    Journal of Cellular and Comparative Physiology 12 (1938), S. 295-308 
    ISSN: 0095-9898
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...