ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cell & Developmental Biology  (3)
  • 1985-1989  (3)
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 184 (1985), S. 1-22 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Males of Euphydryas editha (Lepidoptera: Nymphalidae) need their antennae to mate successfully, but females do not. Antennal structure was investigated in the hope of explaining this functional dimorphism, which is opposite to that in other butterflies (e.g., Myers, '68; Grula and Taylor, '80). No external differences between the sexes were observed with electron microscopy. There are four types of antennal sensilla: the spine, which acts mainly as a mechanoreceptor, shallow dish hairs and hidden hairs, which are chemoreceptors, and a whiplike sensillum of uncertain function. The internal morphology of male and female antennae differs in several respects which may relate to functional differences. The mating systems of butterflies are discussed briefly to explain our results and those of others.
    Zusätzliches Material: 14 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Journal of Morphology 199 (1989), S. 1-13 
    ISSN: 0362-2525
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: This study examines the morphology of sporadic congenital microphthalmia in 1-day-old chicks, with particular emphasis on the neural retina. On the basis of the size of the eyeball it is possible to classify microphthalmia into two groups, severe and mild. In severe microphthalmia (less than 5 mm in equatorial diameter), the eyeball is severely malformed, but in most cases it shows evidence of an organized neural retina. Although ganglion cells and an optic nerve head are present in a small proportion of these retinae, we could not trace an optic nerve projection to the brain. These results indicate that some ganglion cells are able to be sustained after the period of naturally occurring cell death, suggesting either that those ganglion cells have established some contact with the central nervous system or that the presence of their axons in a rudimentary optic nerve is adequate for survival. In mild microphthalmia (greater than 5 mm in equatorial diameter), the most consistent abnormality is a defect in the pecten, which together with other abnormalities such as orbital cysts and colobomas indicates that the major abnormality occurs in the region of the choroid fissure. Associated with these defects are abnormalities within the ganglion cell layer. In some cases the number of ganglion cells was reduced, and in others the numbers of both ganglion and displaced amacrine cells were reduced. Unexpectedly, there were localized regions completely devoid of cells in the ganglion cell layer. The timing of the congenital defect may provide some clue as to the presence of a critical period in which displaced amacrine cells are formed or are sensitive to events related to ganglion cell loss.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 128 (1986), S. 223-230 
    ISSN: 0021-9541
    Schlagwort(e): Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: When 1mM ATP is added to human dermal fibroblasts (DF) in monolayer culture permeabilized by glycerol, they undergo a rapid reduction in length and their intracellular actin filaments aggregate. This process is referred to as cell contraction. Treating glycerol-permeabilized DF with alkaline phosphatase before adding 1mM ATP should cause dephosphorylation. Dephosphorylated preparations do not undergo cell contraction initiated by ATP. When myosin light-chain kinase (MLCK) isolated from turkey gizzard is added with cofactors to cells dephosphorylated by alkaline phosphatase treatment, contraction is restored. DF incubated for 24 h with db cAMP or cholera toxin show elevated intracellular concentrations of cAMP and little cell contraction. Contraction is reestablished when MLCK with cofactors is incubated with these preparations before ATP is added. Fibroblasts from Epidermolysis Bullosa dystrophica recessive patients produce excess cAMP. Those cells show minimal contraction, however; treating them with MLCK and cofactors renews contraction brought about by ATP. When DF are incubated with trifluoperazine to block calmodulin-dependent enzyme reactions, cell contraction is inhibited. Adding cytochalasin B disrupts microfilaments and also inhibits contraction. This work supports the idea that myosin ATPase is critical to cell contraction. Myosin ATPase is dependent on the phosphorylation of the regulatory peptide, myosin light chain. Elevating intracellular concentrations of cAMP or treatment of permeabilized cell preparations with alkaline phosphatase may inhibit myosin ATPase activity. The restoration of phosphorylation by adding MLCK with cofactors served to reestablish cell contraction.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...