ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 208 (1991), S. 99-107 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The orientation of the fibers in the dermis of the tiger salamander, Ambystoma tigrinum, undergoes a dramatic repatterning at metamorphosis. The pre-metamorphic, larval dermis is a tight layer composed of crossed fibers that wind helically around the trunk. This condition is retained by neotenic adults which do not undergo metamorphosis. In contrast, the metamorphosed adult dermis consists of a superficial, loose network of fibers invested with large multicellular glands - -the stratum spongiosum - and a deeper tight layer of fibers - the stratum densum. However, unlike the crossed fibers of the pre-metamorphic dermis, there is no preferred orientation to the fibers in either layer of the post-metamorphic dermis.In order to evaluate whether these two distinctly different fiber patterns are constructed from biochemically similar fibers, the collagen types present in the pre- and post-metamorphic dermis were determined using SDS-polyacrylamide gel electrophoresis. Type I collagen is the predominant collagen of the dermis and the same major collagen types are present for all individuals, whether preor post-metamorphic. Thus, the major types of collagen that compose the dermal fibers do not change during metamorphic repatterning of the dermis.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 14 (1992), S. 589-596 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Receptor-mediated endocytosis occurs via clathrin-coated pits and is therefore coupled to the dynamic cycle of assembly and disassembly of the coat constituents. These coat proteins comprise part, but certainly not all, of the machinery involved in the recognition of membrane receptors and their selective packaging into transport vesicles for internalization. Despite considerable knowledge about the biochemistry of coated vesicles and purified coat proteins, little is known about the mechanisms of coated pit assembly, receptor-sorting and coated vesicle formation. Cell-free assays which faithfully reconstitute these events provide powerful new tools with which to elucidate the overall mechanism of receptor-mediated endocytosis.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 15 (1993), S. 445-449 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In the past few years, two new DNA topoisomerases have been discovered in bacteria, bringing the total number of DNA topoisomerases in E. coli to four. Two classes of topoisomerases, type 1 and type 2, are distinguishable by their amino acid homology and their apparent reaction mechanism. Of the four E. coli topoisomerases, there are two type 1 and two type 2 enzymes. In eukaryotes, the existence of multiple type 1 and type 2 enzymes has also become apparent. The existence of these multiple enzymes provokes a question whose answer has both evolutionary and physiological implications: are these topoisomerases functionally redundant, or have they acquired sufficient specialization that they now perform unique biological reactions? In bacteria, there is evidence for both specialization and redundancy in the functions of topoisomerases.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...