ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-06-20
    Description: Crystal structures of bovine heart cytochrome c oxidase in the fully oxidized, fully reduced, azide-bound, and carbon monoxide-bound states were determined at 2.30, 2.35, 2.9, and 2.8 angstrom resolution, respectively. An aspartate residue apart from the O2 reduction site exchanges its effective accessibility to the matrix aqueous phase for one to the cytosolic phase concomitantly with a significant decrease in the pK of its carboxyl group, on reduction of the metal sites. The movement indicates the aspartate as the proton pumping site. A tyrosine acidified by a covalently linked imidazole nitrogen is a possible proton donor for the O2 reduction by the enzyme.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoshikawa, S -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yamashita, E -- Inoue, N -- Yao, M -- Fei, M J -- Libeu, C P -- Mizushima, T -- Yamaguchi, H -- Tomizaki, T -- Tsukihara, T -- New York, N.Y. -- Science. 1998 Jun 12;280(5370):1723-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Life Science, Himeji Institute of Technology and CREST, Japan Science and Technology Corporation (JST), Kamigohri Akoh, Hyogo 678-1297, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9624044" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspartic Acid/chemistry/metabolism ; Azides/metabolism ; Binding Sites ; Carbon Monoxide/metabolism ; Cattle ; Copper/chemistry/metabolism ; Crystallography, X-Ray ; Electron Transport Complex IV/*chemistry/*metabolism ; Heme/analogs & derivatives/chemistry/metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/chemistry/metabolism ; Hydrogen-Ion Concentration ; Ligands ; Metals/metabolism ; Models, Chemical ; Models, Molecular ; Myocardium/*enzymology ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; *Proton Pumps ; Tyrosine/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-08-25
    Description: The high resolution three-dimensional x-ray structure of the metal sites of bovine heart cytochrome c oxidase is reported. Cytochrome c oxidase is the largest membrane protein yet crystallized and analyzed at atomic resolution. Electron density distribution of the oxidized bovine cytochrome c oxidase at 2.8 A resolution indicates a dinuclear copper center with an unexpected structure similar to a [2Fe-2S]-type iron-sulfur center. Previously predicted zinc and magnesium sites have been located, the former bound by a nuclear encoded subunit on the matrix side of the membrane, and the latter situated between heme a3 and CuA, at the interface of subunits I and II. The O2 binding site contains heme a3 iron and copper atoms (CuB) with an interatomic distance of 4.5 A; there is no detectable bridging ligand between iron and copper atoms in spite of a strong antiferromagnetic coupling between them. A hydrogen bond is present between a hydroxyl group of the hydroxyfarnesylethyl side chain of heme a3 and an OH of a tyrosine. The tyrosine phenol plane is immediately adjacent and perpendicular to an imidazole group bonded to CuB, suggesting a possible role in intramolecular electron transfer or conformational control, the latter of which could induce the redox-coupled proton pumping. A phenyl group located halfway between a pyrrole plane of the heme a3 and an imidazole plane liganded to the other heme (heme a) could also influence electron transfer or conformational control.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukihara, T -- Aoyama, H -- Yamashita, E -- Tomizaki, T -- Yamaguchi, H -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yoshikawa, S -- New York, N.Y. -- Science. 1995 Aug 25;269(5227):1069-74.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, Suita, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7652554" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Cattle ; Copper/*analysis ; Crystallization ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex IV/*chemistry/metabolism ; Fourier Analysis ; Heme/*analogs & derivatives/analysis ; Hydrogen Bonding ; Magnesium/*analysis ; Mitochondria, Heart/enzymology ; Models, Molecular ; Oxidation-Reduction ; Oxygen/metabolism ; Protein Conformation ; Protein Structure, Secondary ; Proton Pumps ; Zinc/*analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-05-24
    Description: The crystal structure of bovine heart cytochrome c oxidase at 2.8 A resolution with an R value of 19.9 percent reveals 13 subunits, each different from the other, five phosphatidyl ethanolamines, three phosphatidyl glycerols and two cholates, two hemes A, and three copper, one magnesium, and one zinc. Of 3606 amino acid residues in the dimer, 3560 have been converged to a reasonable structure by refinement. A hydrogen-bonded system, including a propionate of a heme A (heme a), part of peptide backbone, and an imidazole ligand of CuA, could provide an electron transfer pathway between CuA and heme a. Two possible proton pathways for pumping, each spanning from the matrix to the cytosolic surfaces, were identified, including hydrogen bonds, internal cavities likely to contain water molecules, and structures that could form hydrogen bonds with small possible conformational change of amino acid side chains. Possible channels for chemical protons to produce H2O, for removing the produced water, and for O2, respectively, were identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsukihara, T -- Aoyama, H -- Yamashita, E -- Tomizaki, T -- Yamaguchi, H -- Shinzawa-Itoh, K -- Nakashima, R -- Yaono, R -- Yoshikawa, S -- New York, N.Y. -- Science. 1996 May 24;272(5265):1136-44.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Protein Research, Osaka University, Suita, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8638158" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cattle ; Cell Nucleus/genetics ; Copper/analysis ; Crystallography, X-Ray ; Electron Transport ; Electron Transport Complex IV/*chemistry/genetics/metabolism ; Heme/analogs & derivatives/analysis ; Hydrogen Bonding ; Iron/analysis ; Membrane Proteins/chemistry ; Mitochondria, Heart/genetics ; Models, Molecular ; Molecular Sequence Data ; Molecular Weight ; Myocardium/enzymology ; Nucleotides/metabolism ; Oxidation-Reduction ; Oxygen/metabolism ; Phospholipids/analysis ; *Protein Conformation ; Protein Structure, Secondary ; Proton Pumps ; Water/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...