ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 3122-3146, doi:10.1002/2017JB015059.
    Description: To characterize the along‐strike structural variations of the Juan de Fuca (JdF) Plate as it enters the Cascadia subduction zone, we present prestack time migrated multichannel seismic reflection images of the JdF Plate along a 400‐km‐long trench‐parallel transect extending from 44.3°N to 47.8°N. Beneath the 1.8–3.0‐km‐thick sediment cover, our data reveal basement topographic anomalies associated with a 1.2‐km‐high seamount and in the vicinity of propagator wakes (390–540‐m relief). Weak Moho reflections are imaged beneath the propagator wakes and coincide with reduced Vp in the lower crust and/or uppermost mantle. The inferred locations of propagator wakes in the downgoing plate collocate with some of the boundaries of episodic tremor and slip events. We propose that the structural and hydration heterogeneities associated with these features could lead to anomalous plate interface properties and contribute to episodic tremor and slip segmentation. Intracrustal reflections with apparent dips (20°–30°) consistent with subduction bending normal faults change near 45.8°N, from northward dipping reflections confined to the middle crust in the north to antithetic reflections through the crust in the south, coinciding with a Vp reduction in the lower crust. These observations indicate more extensive faulting deformation and associated hydration of the JdF Plate south of 45.8°N, which likely results from variations of slab dip and resistance to subduction across 46°N. Basement offsets and abrupt depth/amplitude changes in Moho reflections are imaged beneath the four major WNW trending strike‐slip faults that cross the Cascadia deformation front, providing strong evidence of a lower plate origin for these faults.
    Description: NSF Grant Numbers: OCE 1029411, 1029305
    Description: 2018-09-30
    Keywords: Cascadia subduction zone ; Juan de Fuca Plate ; Multichannel seismic reflection imaging ; Subduction bending faulting ; Propagator wakes ; Strike-slip faults
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 121 (2016): 5859–5879, doi:10.1002/2016JB013228.
    Description: We report results from a wide-angle controlled source seismic experiment across the Juan de Fuca plate designed to investigate the evolution of the plate from accretion at the Juan de Fuca ridge to subduction at the Cascadia margin. A two-dimensional velocity model of the crust and upper mantle is derived from a joint reflection-refraction traveltime inversion. To interpret our tomography results, we first generate a plausible baseline velocity model, assuming a plate cooling model and realistic oceanic lithologies. We then use an effective medium theory to infer from our tomography results the extent of porosity, alteration, and water content that would be required to explain the departure from the baseline model. In crust of ages 〉1 Ma and away from propagator wakes and regions of faulting due to plate bending, we obtain estimates of upper crustal hydration of 0.5–2.1 wt % and find mostly dry lower crust and upper mantle. In sections of the crust affected by propagator wakes we find upper estimates of upper crustal, lower crustal, and upper mantle hydration of 3.1, 0.8, and 1.8 wt %, respectively. At the Cascadia deformation front, we find that the amount of water stored at uppermost mantle levels in the downgoing JdF plate is very limited (〈0.3 wt %), with most of the water carried into the subduction zone being stored in the oceanic crust.
    Description: NSF Grant Numbers: OCE-1029305, OCE-1029411, OCE-1249353
    Description: 2017-02-14
    Keywords: Juan De Fuca plate ; Cascadia subduction zone ; Velocity model ; Subducting plate hydration ; Oceanic crust
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...