ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-05
    Description: Next-generation sequencing of human tumours has refined our understanding of the mutational processes operative in cancer initiation and progression, yet major questions remain regarding the factors that induce driver mutations and the processes that shape mutation selection during tumorigenesis. Here we performed whole-exome sequencing on adenomas from three mouse models of non-small-cell lung cancer, which were induced either by exposure to carcinogens (methyl-nitrosourea (MNU) and urethane) or by genetic activation of Kras (Kras(LA2)). Although the MNU-induced tumours carried exactly the same initiating mutation in Kras as seen in the Kras(LA2) model (G12D), MNU tumours had an average of 192 non-synonymous, somatic single-nucleotide variants, compared with only six in tumours from the Kras(LA2) model. By contrast, the Kras(LA2) tumours exhibited a significantly higher level of aneuploidy and copy number alterations compared with the carcinogen-induced tumours, suggesting that carcinogen-induced and genetically engineered models lead to tumour development through different routes. The wild-type allele of Kras has been shown to act as a tumour suppressor in mouse models of non-small-cell lung cancer. We demonstrate that urethane-induced tumours from wild-type mice carry mostly (94%) Kras Q61R mutations, whereas those from Kras heterozygous animals carry mostly (92%) Kras Q61L mutations, indicating a major role for germline Kras status in mutation selection during initiation. The exome-wide mutation spectra in carcinogen-induced tumours overwhelmingly display signatures of the initiating carcinogen, while adenocarcinomas acquire additional C 〉 T mutations at CpG sites. These data provide a basis for understanding results from human tumour genome sequencing, which has identified two broad categories of tumours based on the relative frequency of single-nucleotide variations and copy number alterations, and underline the importance of carcinogen models for understanding the complex mutation spectra seen in human cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304785/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304785/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Westcott, Peter M K -- Halliwill, Kyle D -- To, Minh D -- Rashid, Mamunur -- Rust, Alistair G -- Keane, Thomas M -- Delrosario, Reyno -- Jen, Kuang-Yu -- Gurley, Kay E -- Kemp, Christopher J -- Fredlund, Erik -- Quigley, David A -- Adams, David J -- Balmain, Allan -- 082356/Wellcome Trust/United Kingdom -- 13031/Cancer Research UK/United Kingdom -- A12401/Cancer Research UK/United Kingdom -- A13031/Cancer Research UK/United Kingdom -- A14356/Cancer Research UK/United Kingdom -- F31 CA180669/CA/NCI NIH HHS/ -- F31 CA180715/CA/NCI NIH HHS/ -- R01 CA111834/CA/NCI NIH HHS/ -- R01 CA184510/CA/NCI NIH HHS/ -- T32 GM007175/GM/NIGMS NIH HHS/ -- T32GM007175/GM/NIGMS NIH HHS/ -- U01 CA084244/CA/NCI NIH HHS/ -- U01 CA141455/CA/NCI NIH HHS/ -- U01 CA176287/CA/NCI NIH HHS/ -- U01 CA84244/CA/NCI NIH HHS/ -- UO1 CA176287/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2015 Jan 22;517(7535):489-92. doi: 10.1038/nature13898. Epub 2014 Nov 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA [2] Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA. ; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA. ; Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK. ; Department of Pathology, University of California San Francisco, San Francisco, California 94143, USA. ; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. ; Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 21, Sweden. ; 1] Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA [2] Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California 94158, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25363767" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/chemically induced/genetics ; Animals ; Carcinogens/toxicity ; Carcinoma, Non-Small-Cell Lung/chemically induced/genetics ; Cell Transformation, Neoplastic/*chemically induced/*genetics ; DNA Copy Number Variations/genetics ; Disease Progression ; Female ; Genes, ras/*genetics ; Genomic Instability/genetics ; Germ-Line Mutation/genetics ; Humans ; Lung Neoplasms/*chemically induced/*genetics ; Male ; Methylnitrosourea/toxicity ; Mice ; Models, Genetic ; Mutation/*genetics ; Oncogene Protein p21(ras)/*genetics ; Point Mutation/genetics ; Proto-Oncogene Proteins p21(ras)/*genetics ; Urethane/toxicity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...