ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0009-2940
    Keywords: Carbon dioxide fixation ; 1-Azadiene ligands ; Nickel(0) complexes ; Carboxylation ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Organometallic CO2 Reservoires from Nickel(0)-1-Azadiene-Type Ligands and Their Reactivity in the Carboxylation of Acetophenone1-Azadiene-type ligands yield with nickel(0) binuclear organometallic compounds of the type [Ni(1-azadiene)n,]2 (n = 1, 2). The structures of the complexes 1 (n = 2, ligand A) and 3 (n = 1, ligand C) have been characterized by X-ray crystallography. 1 is unreactive towards CO2, 3 and similar compounds are able to react with CO2 to give metallacyclic carbamato complexes of Ni(II). In these compounds CO2 is activated and can carboxylate acetophenone to yield benzoylic acid upon protolysis. These reactions mimic biologic conversion reactions of CO2 into organic material by organometallics. - The addition of two moles of the (bpy)Ni(0)-fragment [from (bpy)Ni(COD)] to 3 gives the tetranuclear complex 6. The X-ray analysis of the monomeric model compound (bi-py)Ni(A) (11) shows that only the olefin part is coordinated. 6 and 11 can also react with CO2. Cu(I) complexes with 1-azadiene-type ligands are not reactive towards CO2.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0009-2940
    Keywords: Carbon dioxide fixation ; Metal complexes ; Diazadiene ligands ; Carboxylation ; Enzyme models ; Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Activation of CO2 at Transition-Metal Centres: Simulation of Enzymatic CO2 Fixation and Transfer Reactions by Electron-Rich (Diazadiene)magnesium and -manganese ComplexesElectron-rich diazadiene complexes of Mg and Mn can be used as model compounds for enzymatic carboxylation reactions e.g. the „dark reaction“ of the photosynthesis or in biotinedependent CO2 conversion reactions. The activity of the complexes to fix and transfer carbon dioxide strongly depends on the nature of the metal (Mg and Mn are active central atoms, other transition metals are inactive), the π aciditiy of the chelate ligand, and the structure of the complexes. The dimeric manganese complex IIa, the structure of which could be determined by X-ray structure analysis, is one of the most active compounds. NMR studies reveal that the CO2 transfer to substrates with active C - H bonds takes place in the coordination sphere of the metal atom. Carrier of activated CO2 is the N - COO group.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...