ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Planta 167 (1986), S. 292-299 
    ISSN: 1432-2048
    Keywords: Carboxylation ; Chloroplast (artificial stroma) ; Photosynthesis and dehydration ; Spinacia (photosynthesis and dehydration) ; Water stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When spinach leaf tissue was subjected to evaporative dehydration, photosynthetic capacity at very high (5%) CO2 concentration and saturating irradiance (300 W·m-2), decreased in parallel to the relative water content (RWC). A 50% inhibition was observed at 60–40% RWC. In order to examine whether the inhibition was caused by increased solute concentrations in chloroplasts or cytoplasm, an artificial stroma medium (ASM) was set up containing all major osmotically relevant solutes measured in isolated intact spinach chloroplasts. Subsequently, the response of enzyme activities to normal and to increased concentrations of ASM was examined. Inhibition of enzymes by a concerted increase of all solutes was well correlated to the in-vivo response of photosynthesis to dehydration (60% inhibition at double-strength ASM). Inhibitory solutes were mainly divalent inorganic anions, such as sulfate and phosphate. Inhibition of ribulose-1,5-bisphosphate carboxylase by these ions as studied in more detail. Inhibition of the enzyme by sulfate and phosphate was competitive with respect to ribulose-1,5-bisphosphate, but not with respect to CO2. The KI for sulfate was 2.1 mmol·l-1 and for phosphate 0.57 mmol·l-1. Sugars and amino acids at the concentrations found in spinach chloroplasts did not prevent inhibition of enzymes by anions. The results indicate that increased anion concentrations in cells and organelles are responsible for primary, quickly reversible effects of moderate dehydration on plant tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...