ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 15N-NMR spectroscopy  (1)
  • Carbon partitioning  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 70 (1986), S. 466-474 
    ISSN: 1432-1939
    Keywords: Biennial plants ; Carbon partitioning ; Nitrogen partitioning ; Storage ; Harvest index
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growth and nitrogen partitioning were investigated in the biennial monocarp Arctium tomentosum in the field, in plants growing at natural light conditions, in plants in which approximately half the leaf area was removed and in plants growing under 20% of incident irradiation. Growth quantities were derived from splined cubic polynomial exponential functions fitted to dry matter, leaf area and nitrogen data. Main emphasis was made to understanding of the significance of carbohydrate and nitrogen storage of a large tuber during a 2-years' life cycle, especially the effect of storage on biomass and seed yield in the second season. Biomass partitioning favours growth of leaves in the first year rosette stage. Roots store carbohydrates at a constant rate and increase storage of carbohydrates and nitrogen when the leaves decay at the end of the first season. In the second season the reallocation of carbohydrates from storage is relatively small, but reallocation of nitrogen is very large. Carbohydrate storage just primes the growth of the first leaves in the early growing season, nitrogen storage contributes 20% to the total nitrogen requirement during the 2nd season. The efficiency of carbohydrate storage for conversion into new biomass is about 40%. Nitrogen is reallocated 3 times in the second year, namely from the tuber to rosette leaves and further to flower stem leaves and eventually into seeds. The harvest index for nitrogen is 0.73, whereas for biomass it is only 0.19.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Key words Glutamate ; Glutamine ; Glycine ; 15N-NMR spectroscopy ; Urease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Chamaegigas intrepidus Dinter is a poikilohydric aquatic plant that lives in rock pools on granite outcrops in central Namibia. The pools are filled with water only intermittently during the wet season, and the plants may pass through up to 20 rehydration/dehydration cycles during the summer rains. The potential nitrogen sources for the rehydrated plants are ammonium, which is only present at 10–20 µm, amino acids, particularly glycine, and urea, which is generally present at 20–30 µm. We show that urea can be utilised by plants in the field through the presence of urease in the sediments of the rock pools. Urease activity is higher in non-submerged than in submerged sediments, and it can survive 6 months of complete dryness at temperatures up to 60°C. Experiments with [14C]urea under laboratory conditions show that the roots of C. intrepidus are unable to take up urea; while 15N-nuclear magnetic resonance experiments show that [15N]urea is only metabolised to labelled glutamine and glutamate after ammonium has been released by the action of urease. Thus urease plays a vital role in allowing urea to be utilised as a major N source in this nutrient-limited aquatic ecosystem.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...