ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon isotopes
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Organic Geochemistry 125 (2018): 70-81, doi: 10.1016/j.orggeochem.2018.08.008.
    Description: Reconstructions of climate using leaf wax D/H ratios (δDwax) require accounting for the apparent isotopic fractionation (εapp) between plant source water and waxes. There have been conflicting publications on whether plants in the Arctic growing under 24-hour continuous light, fractionate less than temperate and tropical plants. In this study, we examine the effect of diurnal light (DL) versus 24-hour continuous light (CL) on the isotopic composition of leaf n-alkanes and n-acids in greenhouse experiments using two common Arctic plants (Eriophorum vaginatum, or tussock cottongrass and Betula nana, or dwarf birch). For E. vaginatum, the δDwax values of various wax homologues were 5–11‰ more positive for CL plants relative to their DL counterparts, whereas for B. nana, CL waxes were 3–24‰ more negative, suggesting that daylight length is not a unifying control on leaf wax D/H ratios of Arctic plants. The δ13Cwax of B. nana was more negative for plants grown in continuous light compared to diurnal light, reflecting lower water-use efficiency, associated with prolonged stomatal opening in the CL treatment. We modeled the impact of increasing stomatal conductance and effective flow path lengths (mimicking variable leaf morphologies) on the isotopic composition of leaf waters (δDlw) and find that variations in leaf-water enrichment may explain the variable δDwax responses seen between E. vaginatum and B. nana. We suggest that between-species differences in the δDlw response to light, and differences in the utilization of stored carbohydrates, were important for governing δDwax. Our greenhouse results suggest that Arctic plant leaf waxes do not consistently display reduced εapp values as a result of 24-hour day light, providing additional support for field observations.
    Description: We thank Fred Jackson and Chris Claussen of the Brown University Plant Environmental Center for assistance with growth chambers, Chelsea Parker for assistance in plant care, and Rafael Tarozo for laboratory assistance. We want to thank Trevor Porter and three anonymous reviewers for constructive comments to improve the manuscript. This work was funded by NSF Arctic Natural Sciences grant 1503846 to Yongsong Huang and James Russell and NSF-OPP grant 1603214 to Anne Giblin. We also acknowledge graduate support for Will Daniels from the Brown-MBL joint graduate program and the Institute at Brown for Environment and Society.
    Keywords: Leaf waxes ; Hydrogen isotopes ; Carbon isotopes ; Growth experiment ; Arctic ; Continuous light
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...