ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lattaud, J., Broder, L., Haghipour, N., Rickli, J., Giosan, L., & Eglinton, T., I. Influence of hydraulic connectivity on carbon burial efficiency in Mackenzie Delta lake sediments. Journal of Geophysical Research: Biogeosciences, 126(3), (2021): e2020JG006054, https://doi.org/10.1029/2020JG006054.
    Description: The Arctic is undergoing accelerated changes in response to ongoing modifications to the climate system, and there is a need for local to regional scale records of past climate variability in order to put these changes into context. The Mackenzie Delta region in northern Canada is populated by numerous small shallow lakes. They are classified as no-, low-, and high-closure (NC, LC, and HC, respectively) lakes, reflecting varying degrees of connection to the river main stem, and have different sedimentation characteristics. This study examines sedimentological (mineral surface area, grain size), carbon isotopic (bulk and molecular-level) and inorganic isotopic (neodymium) characteristics of sediment cores from three lakes representing each class. We find that HC lake sediments exhibit strikingly different properties from the other lake sediments. Specifically, they are characterized by higher organic carbon loadings per unit mineral surface area and with relatively minor influence from allochthonous, petrogenic (rock-derived) organic carbon. In contrast, LC and NC lakes have the potential to record basin-scale climatic changes at a high resolution by virtue of enhanced detrital sedimentation. Overall the delta lakes have the capacity to bury about 2 MtC year−1, with little changes in the last 200 years. However, in the (near) future, an increased number of high closure lakes might change the carbon burial efficiency of the Mackenzie Delta as they seem to retain less carbon than NC and LC lakes.
    Description: J. Lattaud was funded by a Rubicon grant (019.183EN.002) from NWO, Netherlands Organization for scientific research.
    Keywords: Bulk radiocarbon ; Carbon isotopes ; Mackenzie Delta ; Mineral loading ; N-alkanes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schwestermann, T., Eglinton, T., I., Haghipour, N., McNichol, A. P., Ikehara, K., & Strasser, M. Event-dominated transport, provenance, and burial of organic carbon in the Japan Trench. Earth and Planetary Science Letters, 563, (2021): 116870, https://doi.org/10.1016/j.epsl.2021.116870.
    Description: The delivery of organic carbon (OC) to the ocean's deepest trenches in the hadal zone is poorly understood, but may be important for the carbon cycle, contain crucial information on sediment provenance and event-related transport processes, and provide age constraints on stratigraphic sequences in this terminal sink. In this study, we systematically characterize bulk organic matter (OM) and OC signatures (TOC/TN, C, 14C), as well as those from application of serial thermal oxidation (ramped pyrolysis/oxidation) of sediment cores recovered along an entire hadal trench encompassing high stratigraphic resolution records spanning nearly 2000 years of deposition. We analyze two cores from the southern and northern Japan Trench, where submarine canyon systems link shelf with trench. We compare results with previously published data from the central Japan Trench, where canyon systems are absent. Our analyses enable refined dating of the stratigraphic record and indicate that event deposits arise from remobilization of relatively surficial sediment coupled with deeper erosion along turbidity current pathways in the southern and central study site and from canyon flushing events in the northern study site. Furthermore, our findings indicate deposition of predominantly marine OC within hemipelagic background sediment as well as associated with event deposits along the entire trench axis. This implies that canyon systems flanking the Japan Trench do not serve as a short-circuit for injection of terrestrial OC to the hadal zone, and that tropical cyclones are not major agents for sediment and carbon transfer into this trench system. These findings further support previous Japan Trench studies interpreting that event deposits originate from the landward trench slope and are earthquake-triggered. The very low terrestrial OC input into the Japan Trench can be explained by the significant distance between trench and hinterland (〉180 km), and the physiography of the canyons that do not connect to coast and river systems. We suggest that detailed analyzes of long sedimentary records are essential to understand OC transfer, deposition and burial in hadal trenches.
    Description: The cruise was supported by the German Bundesministerium für Bildung und Forschung (BMBF 03G0251A) and the Deutsche Forschungsgemeinschaft. We acknowledge the Kochi core repository for additional surface samples of Japanese Cruises. Al Gagnon and Mary Lardie are thanked for their great help and technical assistance with the RPO instrument at NOSAMS. APM and the NOSAMS work were supported by the National Science Foundation Cooperative Agreement OCE-1239667. We appreciate the assistance from members of the Laboratory of Ion Beam Physics for the AMS measurements. Rui Bao is acknowledged for helpful discussions. A special thank you goes to Madalina Jaggi for her technical assistance for the C analysis of rinsed samples. This study was supported by the Austrian Science Fund (FWF P29678-N28) and a postgraduate grant by the International Association of Sedimentologists (IAS). We also acknowledge constructive support by the two reviewers (Jordon Hemingway and an anonymous). The authors declare no conflict of interests. The bathymetric data used in figure 1 is available at JAMSTEC-DARWIN database (http://www.godac.jamstec.go.jp/darwin/e) and Bundesamt für Seeschifffahrt und Hydrographie (https://www.bsh.de/DE/DATEN/Ozeanographisches_Datenzentrum/Vermessungsdaten/Nordpazifischer_Ozean/nordpazifik_node.html). Data of carbon analyses are displayed in the supporting information and also available from the corresponding author on reasonable request.
    Keywords: Carbon isotopes ; Carbon provenance ; Hadal zone event-stratigraphy ; Carbon transfer ; Japan Trench ; Ramped Pyr/Ox
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Earth Science 4 (2016): 77, doi:10.3389/feart.2016.00077.
    Description: Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, δ13C, Δ14C) and molecular organic geochemistry (lignin, leaf waxes). High-resolution age models (137Cs, 210Pb) of downcore lake sediment records (n = 11) along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels). Comparison with earlier published Mackenzie River depth profiles shows that (i) lake sediments reflect the riverine surface suspended load, and (ii) hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale) riverine fluxes and may prove instrumental in shedding light on past behavior of arctic rivers, as well as how they respond to a changing climate.
    Description: Funding was provided by the US National Science Foundation as part of the Arctic Great Rivers Observatory (NSF-0732522 and NSF-1107774), as well as the Netherlands Organization for Scientific Research (Rubicon #825.10.022, and Veni #863.12.004). Additional funding for the lake coring was provided from WHOI through its Ocean and Climate Change Institute.
    Keywords: Lignin ; Biomarkers ; Mackenzie River ; Carbon isotopes ; Lake sediments
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-11-04
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Voss, B., Eglinton, T., Peucker-Ehrenbrink, B., Galy, V., Lang, S., McIntyre, C., Spencer, R., Bulygina, E., Wang, Z., & Guay, K. Isotopic evidence for sources of dissolved carbon and the role of organic matter respiration in the Fraser River basin, Canada. Biogeochemistry. (2022), https://doi.org/10.1007/s10533-022-00945-5.
    Description: Sources of dissolved and particulate carbon to the Fraser River system vary significantly in space and time. Tributaries in the northern interior of the basin consistently deliver higher concentrations of dissolved organic carbon (DOC) to the main stem than other tributaries. Based on samples collected near the Fraser River mouth throughout 2013, the radiocarbon age of DOC exported from the Fraser River does not change significantly across seasons despite a spike in DOC concentration during the freshet, suggesting modulation of heterogeneous upstream chemical and isotopic signals during transit through the river basin. Dissolved inorganic carbon (DIC) concentrations are highest in the Rocky Mountain headwater region where carbonate weathering is evident, but also in tributaries with high DOC concentrations, suggesting that DOC respiration may be responsible for a significant portion of DIC in this basin. Using an isotope and major ion mass balance approach to constrain the contributions of carbonate and silicate weathering and DOC respiration, we estimate that up to 33 ± 11% of DIC is derived from DOC respiration in some parts of the Fraser River basin. Overall, these results indicate close coupling between the cycling of DOC and DIC, and that carbon is actively processed and transformed during transport through the river network.
    Description: Open Access funding provided by the MIT Libraries. This work was supported by the WHOI Academic Programs Office, the MIT EAPS Department Student Assistance Fund, and the PAOC Houghton Fund to BMV; NSF-ETBC grants OCE-0851015 to BPE, VG, and TIE and OCE-0851101 to RGMS; NSF grant EAR-1226818 to BPE; NSF grant OCE-0928582 to TIE and VG; and a WHOI Arctic Research Initiative grant to ZAW.
    Keywords: River ; Carbon isotopes ; Radiocarbon ; Weathering ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...