ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Carbon cycle  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 21 (2007): GB2026, doi:10.1029/2006GB002900.
    Description: We investigate the interannual variability in the flux of CO2 between the atmosphere and the Southern Ocean on the basis of hindcast simulations with a coupled physical-biogeochemical-ecological model with particular emphasis on the role of the Southern Annular Mode (SAM). The simulations are run under either pre-industrial or historical CO2 concentrations, permitting us to separately investigate natural, anthropogenic, and contemporary CO2 flux variability. We find large interannual variability (±0.19 PgC yr−1) in the contemporary air-sea CO2 flux from the Southern Ocean (〈35°S). Forty-three percent of the contemporary air-sea CO2 flux variance is coherent with SAM, mostly driven by variations in the flux of natural CO2, for which SAM explains 48%. Positive phases of the SAM are associated with anomalous outgassing of natural CO2 at a rate of 0.1 PgC yr−1 per standard deviation of the SAM. In contrast, we find an anomalous uptake of anthropogenic CO2 at a rate of 0.01 PgC yr−1 during positive phases of the SAM. This uptake of anthropogenic CO2 only slightly mitigates the outgassing of natural CO2, so that a positive SAM is associated with anomalous outgassing in contemporaneous times. The primary cause of the natural CO2 outgassing is anomalously high oceanic partial pressures of CO2 caused by elevated dissolved inorganic carbon (DIC) concentrations. These anomalies in DIC are primarily a result of the circulation changes associated with the southward shift and strengthening of the zonal winds during positive phases of the SAM. The secular, positive trend in the SAM has led to a reduction in the rate of increase of the uptake of CO2 by the Southern Ocean over the past 50 years.
    Description: This work was supported by NASA headquarters under the Earth System Science Fellowship Grant NNG05GP78H to N. S. L. and grants NAG5-12528 and NNG04GH53G to N. G. Both S. C. D. and I. D. L. were supported by NSF/ONR NOPP (N000140210370) and NASA (NNG05GG30G).
    Keywords: Southern Ocean ; Carbon cycle ; Southern Annular Mode
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 20 (2006): GB2002, doi:10.1029/2005GB002530.
    Description: Regional air-sea fluxes of anthropogenic CO2 are estimated using a Green's function inversion method that combines data-based estimates of anthropogenic CO2 in the ocean with information about ocean transport and mixing from a suite of Ocean General Circulation Models (OGCMs). In order to quantify the uncertainty associated with the estimated fluxes owing to modeled transport and errors in the data, we employ 10 OGCMs and three scenarios representing biases in the data-based anthropogenic CO2 estimates. On the basis of the prescribed anthropogenic CO2 storage, we find a global uptake of 2.2 ± 0.25 Pg C yr−1, scaled to 1995. This error estimate represents the standard deviation of the models weighted by a CFC-based model skill score, which reduces the error range and emphasizes those models that have been shown to reproduce observed tracer concentrations most accurately. The greatest anthropogenic CO2 uptake occurs in the Southern Ocean and in the tropics. The flux estimates imply vigorous northward transport in the Southern Hemisphere, northward cross-equatorial transport, and equatorward transport at high northern latitudes. Compared with forward simulations, we find substantially more uptake in the Southern Ocean, less uptake in the Pacific Ocean, and less global uptake. The large-scale spatial pattern of the estimated flux is generally insensitive to possible biases in the data and the models employed. However, the global uptake scales approximately linearly with changes in the global anthropogenic CO2 inventory. Considerable uncertainties remain in some regions, particularly the Southern Ocean.
    Description: This research was financially supported by the National Aeronautics and Space Administration under grant NAG5- 12528. N. G. also acknowledges support by the National Science Foundation (OCE-0137274). Climate and Environmental Physics, Bern acknowledges support by the European Union through the Integrated Project CarboOcean and the Swiss National Science Foundation.
    Keywords: Anthropogenic CO2 ; Carbon cycle ; Inverse modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Format: application/postscript
    Format: application/x-tex
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...