ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Carbon and nitrogen  (1)
  • Lupinus arboreus  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Oecologia 107 (1996), S. 433-440 
    ISSN: 1432-1939
    Schlagwort(e): Elevated CO2 ; Resource partitioning ; Carbon and nitrogen ; Carbohydrates ; Lignin
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract The effects of CO2 enrichment and soil nutrient status on tissue quality were investigated and related to the potential effect on growth and decomposition. Two California annuals, Avena fatua and Plantago erecta, were grown at ambient and ambient plus 35 Pa atmospheric CO2 in nutrient unamended and amended serpentine soil. Elevated CO2 led to significantly increased Avena shoot nitrogen concentrations in the nutrient amended treatment. It also led to decreased lignin concentrations in Avena roots in both nutrient treatments, and in Plantago shoots and roots with nutrient addition. Concentrations of total nonstructural carbohydrate (TNC) and carbon did not change with elevated CO2 in either species. As a consequence of increased biomass accumulation, increased CO2 led to larger total pools of TNC, lignin, total carbon, and total nitrogen in Avena with nutrient additions. Doubling CO2 had no significant effect on Plantago. Given the limited changes in the compounds related to decomposibility and plant growth, effects of increased atmospheric CO2 mediated through tissue composition on Avena and Plantago are likely to be minor and depend on site fertility. This study suggests that other factors such as litter moisture, whether or not litter is on the ground, and biomass allocation among roots and shoots, are likely to be more important in this California grassland ecosystem. CO2 could influence those directly as well as indirectly.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    Springer
    Plant ecology 122 (1996), S. 83-93 
    ISSN: 1573-5052
    Schlagwort(e): Artemisia pycnocephala ; Light availability ; Lupinus arboreus ; Resource patchiness ; Soil moisture ; Soil nitrogen availability
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Abstract In early stages of primary succession, colonizing plants can create resource patches that influence the abundance and distribution of other species. To test whether different colonizing shrubs generate contrasting patches on coastal sand dunes, we compared soil characteristics and light availability under the nitrogen-fixing shrub Lupinus arboreus, under the non-nitrogen-fixing shrub Artemisia pycnocephala, and between shrubs on dunes at a site in northern California. Concentrations of inorganic nitrogen and net nitrogen mineralization rates were generally 1–10 times greater in soil under Lupinus than under Artemisia or between shrubs. Soil water content was mostly lower under shrubs. Mean photon flux density near ground level was reduced by at least 80% at ≥ 35 cm inside shrub canopies. Topography appeared to have more effect on soil moisture but less direct effect on nitrogen availability than did Lupinus. However, Lupinus probably increases nitrogen levels more on higher, drier dunes. Microhabitats under and between nitrogen-fixing shrubs constitute a mosaic of individually poor but complementary patches in which high levels of light and moderate levels of soil nitrogen are present but tend not to occur together.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...