ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-07
    Description: Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 +/- 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 +/- 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 +/- 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 +/- 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gatti, L V -- Gloor, M -- Miller, J B -- Doughty, C E -- Malhi, Y -- Domingues, L G -- Basso, L S -- Martinewski, A -- Correia, C S C -- Borges, V F -- Freitas, S -- Braz, R -- Anderson, L O -- Rocha, H -- Grace, J -- Phillips, O L -- Lloyd, J -- England -- Nature. 2014 Feb 6;506(7486):76-80. doi: 10.1038/nature12957.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Instituto de Pesquisas Energeticas e Nucleares (IPEN)-Comissao Nacional de Energia Nuclear (CNEN)-Atmospheric Chemistry Laboratory, 2242 Avenida Professor Lineu Prestes, Cidade Universitaria, Sao Paulo CEP 05508-000, Brazil [2]. ; 1] School of Geography, University of Leeds, Woodhouse Lane, Leeds LS9 2JT, UK [2]. ; 1] Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, 325 Broadway, Boulder, Colorado 80305, USA [2] Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado 80309, USA [3]. ; Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK. ; Instituto de Pesquisas Energeticas e Nucleares (IPEN)-Comissao Nacional de Energia Nuclear (CNEN)-Atmospheric Chemistry Laboratory, 2242 Avenida Professor Lineu Prestes, Cidade Universitaria, Sao Paulo CEP 05508-000, Brazil. ; Center for Weather Forecasts and Climate Studies, Instituto Nacional de Pesquisas Espaciais (INPE), Rodovia Dutra, km 39, Cachoeira Paulista CEP 12630-000, Brazil. ; 1] Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK [2] Remote Sensing Division, INPE (National Institute for Space Research), 1758 Avenida dos Astronautas, Sao Jose dos Campos CEP 12227-010, Brazil. ; Departamento de Ciencias Atmosfericas/Instituto de Astronomia e Geofisica (IAG)/Universidade de Sao Paulo, 1226 Rua do Matao, Cidade Universitaria, Sao Paulo CEP 05508-090, Brazil. ; Crew Building, The King's Buildings, West Mains Road, Edinburgh EH9 3JN, UK. ; School of Geography, University of Leeds, Woodhouse Lane, Leeds LS9 2JT, UK. ; 1] School of Tropical and Marine Biology and Centre for Terrestrial Environmental and Sustainability Sciences, James Cook University, Cairns 4870, Queensland, Australia [2] Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, Berkshire, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499918" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/*chemistry ; Biomass ; Biota ; Brazil ; *Carbon Cycle ; Carbon Dioxide/analysis ; Carbon Monoxide/analysis ; Droughts/*statistics & numerical data ; Fires/statistics & numerical data ; Fresh Water/analysis ; Photosynthesis ; Rain ; Seasons ; Trees/metabolism ; Tropical Climate
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-18
    Description: The Constellation-X mission, planned for launch in 2011, will feature an array of hard-x ray telescopes with a total collecting area goal of 1500 square centimeters at 40 keV. Various technologies are currently being investigated for the optics of these telescopes including multilayer-coated Eletroformed-Nickel-Replicated (ENR) shells. The attraction of the ENR process is that the resulting full-shell optics are inherently stable and offer the promise of good angular resolution and enhanced instrument sensitivity. The challenge for this process is to meet a relatively tight weight budget with a relatively dense material (rho nickel = 9 grams per cubic centimeters.) To demonstrate the viability of the ENR process we are fabricating a prototype HXT mirror module to be tested against a competing segmented-glass-shell optic. The ENR prototype will consist of 5 shells of diameters from 150 mm to 280 mm and of 426 mm total length. To meet the stringent weight budget for Con-X, the shells will be only 150 micron thick. The innermost of these will be coated with Iridium, while the remainder will be coated with graded-density multilayers. Mandrels for these shells are currently under fabrication (Jan 03), with the first shells scheduled for production in February 03. A tentative date of late Summer has been set for prototype testing. Issues currently being addressed are the control of stresses in the multiplayer coating and ways of mitigating their effects on the figure of the necessarily thin shells. Also, the fabrication, handling and mounting of these shells without inducing permanent figure distortions. A full status report on the prototype optic will be presented along with test results as available.
    Keywords: Astronomy
    Type: Optics for EUV, X-Ray and Gamma-Ray Astronomy; Aug 03, 2003 - Aug 08, 2003; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...