ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-193X
    Keywords: Calorimetry ; Molecular modelling ; Crown compounds ; Cryptands ; Macrocyclic ligands ; Conformational analysis ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Stability constants and enthalpy changes determined by calorimetric titrations and supported by selected NMR titrations are reported for the complexation of sodium and potassium cations with 18 different crown ethers containing nitrogen atoms with different number, location and substitution pattern. The data, measured in methanol mostly with potassium salts, are compared to literature data; they show striking differences between all-oxygen analogs and the macrocycles with NH groups. In contrast, affinities with aza crown ethers bearing alkyl groups at the nitrogen as well as with the cryptand [2.2.2] come closer to the complexation free energies predicted from the number and electron donating capacity of the ligand heteroatoms. This is rationalised on the basis of molecular mechanics calculations, showing that a NH-containing crown predominates in conformations with axial N lone pairs, due to their repulsive electrostatic interactions with the ring oxygen atoms. Replacement of the hydrogen by alkyl groups forces the lone pairs to an equatorial position, thus enabling better complex formation, as borne out by experiment. In line with these arguments the lgK differences are with some exceptions more due to ΔH than to TΔS differences. The calorimetric data show linear isoequilibrium correlations between TΔS and ΔH, with slopes between those observed with other crown ether and cryptand complexes. Preliminary investigations of some synthetic macrocyclic amide precursors yield appreciable complexation only, if the two carbonyl oxygens can come in close contact with the guest cation. Computer aided molecular modelling shows that this is possible in a small 15C5-derivative, in which the polyethylenglycol cycle only serves as ring template without binding contributions from the ether oxygen atoms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-193X
    Keywords: Crown ethers ; Ammonium ions ; Binding mechanisms ; Calorimetry ; Solvent effects ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Thermodynamics of 18-crown-6 complexes with ammonium cations (NH4, MeNH3, Me2NH2, Me3NH, Me4N, Et4N, PhNH3, and PhCH2NH3 ) in methanol were determined by titration calorimetry. The results show strong contributions from entropy terms counteracting the enthalpy of complexation, and a linear decrease of the complexation free energy ΔG with the number of available N-H hydrogen bonds. In several cases formation of relatively strong complexes containing two ammonium ions per crown unit was observed. Tetramethylammonium ions show no detectable association with the crown ether, demonstrating the absence of significant Coulomb-type interaction between the partial charges at the crown ether oxygen and the N+-C-H atoms. Ammonium ions bind to aza crown ethers with almost equal affinity as to the all-oxygen anologs only, if methyl groups at the nitrogen atoms force the lone pairs into equatorial position. Molecular mechanics calculations (CHARMm) of corresponding gas-phase complexes yield geometries and energies in agreement with this, with energetically equally good conformations of an essentially undistorted D3d crown accepting either 3 linear hydrogen bonds, or 6 bifurcated bonds from the primary ammonium cations. Complexation equilibria were measured with PhNH3, and PhCH2NH3 in water, 2-propanol, tert-butyl alcohol, n-octanol, DMF, DMSO, pyridine, HMPT and acetone mostly by calorimetry, in some cases by potentiometry. The observed association constants varied by factors of up to 1000; the solvent effects can be described generally as a linear function of the hydrogen bond accepting power of the solvent molecules, in line with the mechanisms derived above. The lgK and ΔH values of the complexation of the PhNH3 or PHCH2NH3 cation with 18-crown-6 ligand are compared with a large range of available solvent properties. The best correlations (R ≈ 0.9) for lgK (or ΔG) are obtained with values characterizing the electron donor capacity of the solvent (Ca, β*, DN) for lgK, as found earlier for complexes between K+ and 18C6.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...