ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • CYP2D6; 7-hydroxychlorpromazine  (1)
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    European journal of clinical pharmacology 50 (1996), S. 121-128 
    ISSN: 1432-1041
    Schlagwort(e): Key words Chlorpromazine ; CYP2D6; 7-hydroxychlorpromazine ; quinidine ; polymorphic metabolism
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Chemie und Pharmazie , Medizin
    Notizen: Abstract Quinidine is a potent inhibitor of CYP2D6 (debrisoquine 4-hydroxylase). Its effect on the disposition of chlorpromazine was investigated in ten healthy volunteers using a randomised crossover design with two phases. A single oral dose of chlorpromazine hydrochloride (100 mg) was given with and without prior administration of quinidine bisulphate (250 mg). Chlorpromazine and seven of its metabolites were quantified in the 0- to 12-h urine while plasma concentrations of chlorpromazine and 7-hydroxychlorpromazine were measured over 48 h. All volunteers were phenotyped as extensive metabolisers with respect to CYP2D6 using the methoxyphenamine/O-desmethylmethoxyphenamine metabolic ratio. Quinidine significantly decreased the urinary excretion of 7-hydroxylchlorpromazine 2.2-fold. Moreover the urinary excretion of this metabolite correlated inversely (r s = −0.80) with the metabolic ratio. The urinary recoveries of chlorpromazine, chlorpromazine N-oxide, 7-hydroxy-N-desmethylchlorpromazine, N-desmethylchlorpromazine sulphoxide and the total of all eight analytes were unaltered by quinidine. However, quinidine administration caused significant increases in the urinary excretions of chlorpromazine sulphoxide, N-desmethylchlorpromazine and N, N-didesmethylchlorpromazine sulphoxide, which indicated that compensatory increase in these metabolic routes of chlorpromazine might have been responsible for the lack of change observed in the urinary recovery of the parent drug. Quinidine administration produced modest decreases (1.2- to 1.3-fold) in the mean peak plasma concentrations and mean areas under the plasma concentration-time curves of 7-hydroxychlorpromazine and increases (1.3- to 1.4-fold) in these parameters for the parent drug chlorpromazine, but none of these changes reached statistical significance. Based on ANOVA the sample sizes required to detect these differences as significant (α = 0.5) with a probability of 0.8 were determined to vary between 15 and 42. These data suggest that CYP2D6 is involved in the metabolism of chlorpromazine to 7-hydroxychlorpromazine. However, genetic polymorphism in this metabolic process did not play a dominant role in accounting for the extremely large interindividual variations in plasma concentrations encountered with this drug.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...