ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: It is shown that code expanding optimizations have strong and non-intuitive implications on instruction cache design. Three types of code expanding optimizations are studied: instruction placement, function inline expansion, and superscalar optimizations. Overall, instruction placement reduces the miss ratio of small caches. Function inline expansion improves the performance for small cache sizes, but degrades the performance of medium caches. Superscalar optimizations increases the cache size required for a given miss ratio. On the other hand, they also increase the sequentiality of instruction access so that a simple load-forward scheme effectively cancels the negative effects. Overall, it is shown that with load forwarding, the three types of code expanding optimizations jointly improve the performance of small caches and have little effect on large caches.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-CR-188467 , NAS 1.26:188467 , UILU-ENG-91-2227 , CRHC-91-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Modern memory systems are composed of levels of cache memories, a virtual memory system, and a backing store. Varying more than a few design parameters and measuring the performance of such systems has traditionally be constrained by the high cost of simulation. Models of cache performance recently introduced reduce the cost simulation but at the expense of accuracy of performance prediction. Stack-based methods predict performance accurately using one pass over the trace for all cache sizes, but these techniques have been limited to fully-associative organizations. This paper presents a stack-based method of evaluating the performance of cache memories using a recurrence/conflict model for the miss ratio. Unlike previous work, the performance of realistic cache designs, such as direct-mapped caches, are predicted by the method. The method also includes a new approach to the problem of the effects of multiprogramming. This new technique separates the characteristics of the individual program from that of the workload. The recurrence/conflict method is shown to be practical, general, and powerful by comparing its performance to that of a popular traditional cache simulator. The authors expect that the availability of such a tool will have a large impact on future architectural studies of memory systems.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-CR-186553 , NAS 1.26:186553 , AD-A222808 , UILU-ENG-90-2214 , CSG-122
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: An abstract system of benchmark characteristics that makes it possible, in the beginning of the design stage, to design with benchmark performance in mind is presented. The benchmark characteristics for a set of commonly used benchmarks are then shown. The benchmark set used includes some benchmarks from the Systems Performance Evaluation Cooperative (SPEC). The SPEC programs are industry-standard applications that use specific inputs. Processor, memory-system, and operating-system characteristics are addressed.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: Computer (ISSN 0018-9162); 24; 48-56
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...