ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: CO2 ; Nitrogen ; Source-sink ; Construction cost ; Pinus taeda
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seedlings of loblolly pine (Pinus taeda L.) were grown under varying conditions of soil nitrogen and atmospheric carbon dioxide availability to investigate the interactive effects of these resources on the energetic requirements for leaf growth. Increasing the ambient CO2 partial pressure from 35 to 65 Pa increased seedling growth only when soil nitrogen was high. Biomass increased by 55% and photosynthesis increased by 13% after 100 days of CO2 enrichment. Leaves from seedlings grown in high soil nitrogen were 7.0% more expensive on a g glucose g−1 dry mass basis to produce than those grown in low nitrogen, while elevated CO2 decreased leaf cost by 3.5%. Nitrogen and CO2 availability had an interactive effect on leaf construction cost expressed on an area basis, reflecting source-sink interactions. When both resources were abundant, leaf construction cost on an area basis was relatively high (81.8±3.0 g glucose m−2) compared to leaves from high nitrogen, low CO2 seedlings (56.3±3.0 g glucose m−2) and low nitrogen, low CO2 seedlings (67.1±2.7 g glucose m−2). Leaf construction cost appears to respond to alterations in the utilization of photoassimilates mediated by resource availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: ammonium toxicity ; carbohydrates ; CO2 ; nitrogen ; Pinus taeda ; Pinus ponderosa ; root respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract We measured CO2 efflux from intact root/rhizosphere systems of 155 day old loblolly (Pinus taeda L.) and ponderosa (Pinus ponderosa Dougl. ex Laws.) pine seedlings in order to study the effects of elevated atmospheric CO2 on the below-ground carbon balance of coniferous tree seedlings. Seedlings were grown in sterilized sand culture, watered daily with either 1, 3.5 or 7 mt M NH 4 + , and maintained in an atmosphere of either 35 or 70 Pa CO2. Carbon dioxide efflux (μmol CO2 plant−1 s−1) from the root/rhizosphere system of both species significantly increased when seedlings were grown in elevated CO2, primarily due to large increases in root mass. Specific CO2 efflux (μmol CO2 g root−1 s−1) responded to CO2 only under conditions of adequate soil nitrogen availability (3.5 mt M). Under these conditions, CO2 efflux rates from loblolly pine increased 70% from 0.0089 to 0.0151 μmol g−1 s−1 with elevated CO2 while ponderosa pine responded with a 59% decrease, from 0.0187 to 0.0077 μmol g−1 s−1. Although below ground CO2 efflux from seedlings grown in either sub-optimal (1 mt M) or supra-optimal (7 mt M) nitrogen availability did not respond to CO2, there was a significant nitrogen treatment effect. Seedlings grown in supra-optimal soil nitrogen had significantly increased specific CO2 efflux rates, and significantly lower total biomass compared to either of the other two nitrogen treatments. These results indicate that carbon losses from the root/rhizosphere systems are responsive to environmental resource availability, that the magnitude and direction of these responses are species dependent, and may lead to significantly different effects on whole plant carbon balance of these two forest tree species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...