ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 339-350 
    ISSN: 0006-3592
    Keywords: tPA production rate ; tPA specific activity ; CHO cells ; hypoxia ; anoxia ; reoxygenation ; perfusion culture ; tissue-type plasminogen activator ; cell metabolism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Animal cell bioreactors are often limited by the oxygen supply. The reduction in oxygen consumption per cell that occurs under hypoxic conditions may be exploited as a method for increasing reactor capacity if additional glucose is provided to offset increased glycolytic activity. The effects of oxygen deprivation on recombinant tPA (tissue-type plasminogen activator) production were investigated using midexponential and slowly growing CHO cells. The specific oxygen consumption rate can be reduced by at least 50% (mild hypoxic conditions) without affecting the cell growth rate, maximum cell concentration, tPA production rate, or tPA quality (as characterized by the tPA-specific activity and SDS-PAGE analysis). This suggests that mild-hypoxic conditions (with sufficient glucose) can be used to double the cell concentration and volumetric tPA production rate (at a constant volumetric oxygen supply rate) without sacrificing product quality. However, anoxic conditions should be avoided. When slowly growing cultures were exposed to anoxia, the tPA production rate decreased by 80% without affecting tPA quality. However, when midexponential cultures were exposed to anoxia, the drop in tPA production was accompanied by a decrease in tPA quality that ranged from a 40% decrease in tPA specific activity to extensive tPA degradation. © 1993 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 52 (1996), S. 152-160 
    ISSN: 0006-3592
    Keywords: tPA production rate ; CHO cells ; hypercapnia ; pCO2 ; osmolality ; plasminogen activator ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Carbon dioxide is a by-product of mammalian cell metabolism that will build up in culture if it is not removed from the medium. Increased carbon dioxide levels are generally not a problem in bench-top bioreactors, but inhibitory levels can easily be reached in large-scale vessels, especially if the aeration gas is enriched in oxygen. Due to the equilibrium attained between dissolved CO2 and bicarbonate, increased pCO2 is associated with increased osmolality in bioreactors with pH control. While a few preliminary reports indicate that elevated pCO2 levels can inhibit cell growth and/or recombinant protein production, no comprehensive analysis of the interrelated effects of elevated pCO2 and osmolality has been published. We have examined the effects of 140, 195, and 250 mm Hg (187, 260, and 333 mbar, respectively) pCO2 (with and without osmolality control) on the growth of and recombinant tPA production by MT2-1-8 Chinese hamster ovary (CHO) cells. The effects of elevated osmolality were also investigated at the control pCO2 of 36 mm Hg. Elevated pCO2 at 310 mOsm/kg osmolality inhibited cell growth in a dose-dependent fashion, with a maximum decrease of 30% in the specific growth rate (μ) at 250 mm Hg. Osmolality alone had no effect on μ, but the combination of elevated pCO2 and osmolality increased the maximal reduction in μ to 45%. Elevated pCO2 at 310 mOsm/kg osmolality decreased the specific tPA production rate (qtPA) by up to 40% at 250 mm Hg. Interestingly, while increased osmolality decreased qtPA significantly at 140 mm Hg pCO2, it had no effect or even increased qtPA at 195 and 250 mm Hg. © 1996 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...