ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • C4 photosynthesis  (1)
  • Deep roots function  (1)
  • 1995-1999  (2)
  • 1975-1979
Collection
Publisher
Years
  • 1995-1999  (2)
  • 1975-1979
Year
  • 1
    ISSN: 1432-1939
    Keywords: Deep roots function ; Terrestrial vegetation ; Biomes ; Plant forms ; Root depth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The depth at which plants are able to grow roots has important implications for the whole ecosystem hydrological balance, as well as for carbon and nutrient cycling. Here we summarize what we know about the maximum rooting depth of species belonging to the major terrestrial biomes. We found 290 observations of maximum rooting depth in the literature which covered 253 woody and herbaceous species. Maximum rooting depth ranged from 0.3 m for some tundra species to 68 m for Boscia albitrunca in the central Kalahari; 194 species had roots at least 2 m deep, 50 species had roots at a depth of 5 m or more, and 22 species had roots as deep as 10 m or more. The average for the globe was 4.6±0.5 m. Maximum rooting depth by biome was 2.0±0.3 m for boreal forest. 2.1±0.2 m for cropland, 9.5±2.4 m for desert, 5.2±0.8 m for sclerophyllous shrubland and forest, 3.9±0.4 m for temperate coniferous forest, 2.9±0.2 m for temperate deciduous forest, 2.6±0.2 m for temperate grassland, 3.7±0.5 m for tropical deciduous forest, 7.3±2.8 m for tropical evergreen forest, 15.0±5.4 m for tropical grassland/savanna, and 0.5±0.1 m for tundra. Grouping all the species across biomes (except croplands) by three basic functional groups: trees, shrubs, and herbaceous plants, the maximum rooting depth was 7.0±1.2 m for trees, 5.1±0.8 m for shrubs, and 2.6±0.1 m for herbaceous plants. These data show that deep root habits are quite common in woody and herbaceous species across most of the terrestrial biomes, far deeper than the traditional view has held up to now. This finding has important implications for a better understanding of ecosystem function and its application in developing ecosystem models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: C4 photosynthesis ; δ13C values ; Grass flora of Namibia ; Poaceae ; Geographic distribution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The grass flora of Namibia (374 species in 110 genera) shows surprisingly little variation in δ13C values along a rainfall gradient (50–600 mm) and in different habitat conditions. However, there are significant differences in the δ13C values between the metabolic types of the C4 photosynthetic pathway. NADP-ME-type C4 species exhibit the highest δ13C values (−11.7 ‰) and occur mainly in regions with high rainfall. NAD-ME-type C4 species have significantly lower δ13C values (−13.4 ‰) and dominate in the most arid part of the precipitation regime. PCK-type C4 species play an intermediate role (−12.5 ‰) and reach a maximum abundance in areas of intermediate precipitation. This pattern is also evident in genera containing species of different metabolic types. Within the same genus NAD species reach more negative δ13C values than PCK species and δ13C values decreased with rainfall. Also in Aristida, with NADP-ME-type photosynthesis, δ13C values decreased from −11 ‰ in the inland region (600 mm precipitation) to −15 ‰ near the coast (150 mm precipitation), which is a change in discrimination which is otherwise associated by a change in metabolism. The exceptional C3 species Eragrostis walteri and Panicum heterostachyum are coastal species experiencing 50 mm precipitation only. Many of the rare species and monotypic genera grow in moist habitats rather than in the desert, and they are not different in their carbon isotope ratios from the more common flora. The role of species diversity with respect to habitat occupation and carbon metabolism is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...