ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Testor, P., de Young, B., Rudnick, D. L., Glenn, S., Hayes, D., Lee, C. M., Pattiaratchi, C., Hill, K., Heslop, E., Turpin, V., Alenius, P., Barrera, C., Barth, J. A., Beaird, N., Becu, G., Bosse, A., Bourrin, F., Brearley, J. A., Chao, Y., Chen, S., Chiggiato, J., Coppola, L., Crout, R., Cummings, J., Curry, B., Curry, R., Davis, R., Desai, K., DiMarco, S., Edwards, C., Fielding, S., Fer, I., Frajka-Williams, E., Gildor, H., Goni, G., Gutierrez, D., Haugan, P., Hebert, D., Heiderich, J., Henson, S., Heywood, K., Hogan, P., Houpert, L., Huh, S., Inall, M. E., Ishii, M., Ito, S., Itoh, S., Jan, S., Kaiser, J., Karstensen, J., Kirkpatrick, B., Klymak, J., Kohut, J., Krahmann, G., Krug, M., McClatchie, S., Marin, F., Mauri, E., Mehra, A., Meredith, M. P., Meunier, T., Miles, T., Morell, J. M., Mortier, L., Nicholson, S., O'Callaghan, J., O'Conchubhair, D., Oke, P., Pallas-Sanz, E., Palmer, M., Park, J., Perivoliotis, L., Poulain, P., Perry, R., Queste, B., Rainville, L., Rehm, E., Roughan, M., Rome, N., Ross, T., Ruiz, S., Saba, G., Schaeffer, A., Schonau, M., Schroeder, K., Shimizu, Y., Sloyan, B. M., Smeed, D., Snowden, D., Song, Y., Swart, S., Tenreiro, M., Thompson, A., Tintore, J., Todd, R. E., Toro, C., Venables, H., Wagawa, T., Waterman, S., Watlington, R. A., & Wilson, D. OceanGliders: A component of the integrated GOOS. Frontiers in Marine Science, 6, (2019): 422, doi:10.3389/fmars.2019.00422.
    Description: The OceanGliders program started in 2016 to support active coordination and enhancement of global glider activity. OceanGliders contributes to the international efforts of the Global Ocean Observation System (GOOS) for Climate, Ocean Health, and Operational Services. It brings together marine scientists and engineers operating gliders around the world: (1) to observe the long-term physical, biogeochemical, and biological ocean processes and phenomena that are relevant for societal applications; and, (2) to contribute to the GOOS through real-time and delayed mode data dissemination. The OceanGliders program is distributed across national and regional observing systems and significantly contributes to integrated, multi-scale and multi-platform sampling strategies. OceanGliders shares best practices, requirements, and scientific knowledge needed for glider operations, data collection and analysis. It also monitors global glider activity and supports the dissemination of glider data through regional and global databases, in real-time and delayed modes, facilitating data access to the wider community. OceanGliders currently supports national, regional and global initiatives to maintain and expand the capabilities and application of gliders to meet key global challenges such as improved measurement of ocean boundary currents, water transformation and storm forecast.
    Description: The editorial team would like to recognize the support of the global glider community to this paper. Our requests for data and information were met with enthusiasm and welcome contributions from around the globe, clearly demonstrating to us a point made in this paper that there are many active and dedicated teams of glider operators and users. We should also acknowledge the support that OceanGliders has received from the WMO/IOC JCOMM-OCG and JCOMMOPS that have allowed this program to develop, encouraging us to articulate a vision for the role of gliders in the GOOS. We acknowledge support from the EU Horizon 2020 AtlantOS project funded under grant agreement No. 633211 and gratefully acknowledge the many agencies and programs that have supported underwater gliders: AlterEco, ANR, CFI, CIGOM, CLASS Ellet Array, CNES, CNRS/INSU, CONACyT, CSIRO, DEFRA, DFG/SFB-754, DFO, DGA, DSTL, ERC, FCO, FP7, and H2020 Europen Commission, HIMIOFoTS, Ifremer, IMOS, IMS, IOOS, IPEV, IRD, Israel MOST, JSPS, MEOPAR, NASA, NAVOCEANO (Navy), NERC, NFR, NJDEP, NOAA, NRC, NRL, NSF, NSERC, ONR, OSNAP, Taiwan MOST, SANAP-NRF, SENER, SIMS, Shell Exploration and Production Company, Sorbonne Université, SSB, UKRI, UNSW, Vettleson, Wallenberg Academy Fellowship, and WWF.
    Keywords: In situ ocean observing systems ; Gliders ; Boundary currents ; Storms ; Water transformation ; Ocean data management ; Autonomous oceanic platforms ; GOOS
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: Ein Styrol/Maleinsäureanhydrid-Copolymeres (ST-co-MA), hergestellt aus Styrol und Maleinsäureanhydrid in Dimethylsulfoxid mit Azoisobutyronitril als Initiator, wurde durch eine Kondensationsreaktion auf Poly(vinylalkohol) (PVA) gepfropft. Die Strukturen der Produkte wurden mittels IR-Spektroskopie untersucht. Die Abhängigkeit der Pfropfterpolymerzusammensetzung, -viskosität und -ausbeute von der Konzentration der Reaktanden sowie die mechanischen Eigenschen von aus den Pfropfprodukten hergestellten Membranen wurden ermittelt. Bei der Untersuchung der Permeationseigenschaften zeigte sich, daß die Membranen bei allen Zusammensetzungen von Alkohol/Wasser-Gemischen bevorzugt für Wasser durchlässig sind. Mit steigendem PVA-Anteil in den Membranen und wachsendem Ethanolanteil der Alkohol/Wasser-Mischung nimmt die Durchlässigkeit ab und die Selektivität zu. Weiterhin wird der Einfluß der Größe der permeierenden Moleküle auf die Durchlässigkeit und Trenneigenschaften diskutiert.
    Notes: Graft copolymerization of styrene-maleic anhydride copolymer (ST-co-MA) onto poly(vinyl alcohol) (PVA) was carried out by a condensation-coupling reaction through esterification. The ST-co-MA copolymer was obtained by the copolymerization of MA and ST in dimethyl sulfoxide (DMSO), using azoisobutyronitrile as initiator. The structure of the reaction products was confirmed by infrared analysis. The dependence of composition, viscosity and yield of the graft terpolymers on the concentration of the reactants are presented in detail. Mechanical properties of membranes with different compositions were measured over a wide range of composition. It was found that water was permeated through the membranes preferentially in all ranges of feed compositions. The permeation decreased and the selectivity increased with increasing ethanol concentration in the feed and with increasing PVA content in the membrane. The effect of the molecular size of the permeating species on both permeation and separation is also discussed.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The oceans have a major impact on global geophysical processes of the Earth. Non-tidal changes in oceanic currents and ocean-bottom pressure have been shown to be a major source of polar motion excitation and also measurably change the length of the day. The changing mass distribution of the oceans causes the Earth's gravitational field to change and causes the center-of-mass of the oceans to change which in turn causes the center-of-mass of the solid Earth to change. The changing mass distribution of the oceans also changes the load on the oceanic crust, thereby affecting both the vertical and horizontal position of observing stations located near the oceans. Recognizing the important role that non-tidal oceanic processes play in Earth rotation dynamics and terrestrial reference frame definition, the International Earth Rotation Service has recently created a Special Bureau for the Oceans in order to facilitate research into these and other solid Earth geophysical processes affected by the oceans.
    Keywords: Oceanography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Description: The TOPEX/POSEIDON altimetric sea level observation during 1992-93 was used to validate the.
    Keywords: Oceanography
    Type: Journal of Geophysical Research - Oceans
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Keywords: Oceanography
    Type: Towards Estimating Global Ocean Circulation Combining TOPEX/Poseidon altimeter Data and an Ocean General Circulation Model, International Association for the Physical Sciences of the Oceans
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: A three-dimensional variational data assimilation scheme for the Regional Ocean Modeling System (ROMS), named ROMS3DVAR, has been described in the work of Li et al. (2008). In this paper, ROMS3DVAR is applied to the central California coastal region, an area characterized by inhomogeneity and anisotropy, as well as by dynamically unbalanced flows. A method for estimating the model error variances from limited observations is presented, and the construction of the inhomogeneous and anisotropic error correlations based on the Kronecker product is demonstrated. A set of single observation experiments illustrates the inhomogeneous and anisotropic error correlations and weak dynamic constraints used. Results are presented from the assimilation of data gathered during the Autonomous Ocean Sampling Network (AOSN) experiment during August 2003. The results show that ROMS3DVAR is capable of reproducing complex flows associated with upwelling and relaxation, as well as the rapid transitions between them. Some difficulties encountered during the experiment are also discussed.
    Keywords: Oceanography
    Type: Journal Of Geophysical Research; Volume 113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: Aquarius is a microwave remote sensing system designed to obtain global maps of the surface salinity field of the oceans from space. It will be flown on the Aquarius/SAC-D mission, a partnership between the USA (NASA) and Argentina (CONAE) with launch scheduled for late in 2008. The objective of Aquarius is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This will provide data to address scientific questions associated with ocean circulation and its impact on climate. For example, salinity is needed to understand the large scale thermohaline circulation, driven by buoyancy, which moves large masses of water and heat around the globe. Of the two variables that determine buoyancy (salinity and temperature), temperature is already being monitored. Salinity is the missing variable needed to understand this circulation. Salinity also has an important role in energy exchange between the ocean and atmosphere, for example in the development of fresh water lenses (buoyant water that forms stable layers and insulates water below from the atmosphere) which alter the air-sea coupling. Aquarius is a combination radiometer and scatterometer (radar) operating at L-band (1.413 GHz for the radiometer and 1.26 GHz for the scatterometer). The primary instrument,for measuring salinity is the radiometer which is able to detect salinity because of the modulation salinity produces on the thermal emission from sea water. This change is detectable at the long wavelength end of the microwave spectrum. The scatterometer will provide a correction for surface roughness (waves) which is one of the greatest unknowns in the retrieval. The sensor will be in a sun-synchronous orbit at about 650 km with equatorial crossings of 6am/6pm. The antenna for these two instruments is a 3 meter offset fed reflector with three feeds arranged in pushbroom fashion looking away from the sun toward the shadow side of the orbit to minimize sunglint. The mission goal is to produce maps of the salinity field globally once each month with an accuracy of 0.2 psu and a spatial resolution of 100 km. This will be adequate to address l&ge scale features of the salinity field of the open ocean. The temporal resolution is sufficient to address seasonal changes and a three year mission is planned to-collect sufficient data to look for interannual variation. Aquarius is being developed by NASA as part of the Earth System Science Pathfinder (ESSP) program. The SAC-D mission is being developed by CONAE and will include the space craft and several additional instruments, including visible and infrared cameras and a microwave radiometer to monitor rain and wind velocity over the oceans, and sea ice.
    Keywords: Oceanography
    Type: URSI General Assembly Meeting; Oct 23, 2005 - Oct 29, 2005; Dehli; India
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-15
    Description: The TOPEX/POSEIDON altimetric sea level observation during 1992-1993 was used to validate the simulation made by a global ocean general circulation model (OGCM) forced by the daily wind stress and heat flux derived from the National Meteorological Center operational analysis. The OGCM is a version of the modular ocean model with a horizontal resolution of 2 deg longitude and 1 deg latitude and 22 levels in the vertical. The model simulation is compared to the observation at spatial scales of the order of 500 km and larger. Only the temporal variations are examined. The variability is composed primarily of the annual cycle and intraseasonal fluctuations (periods shorter than 100 days). The basic features of the annual cycle are simulated well by the model. Major discrepancies are found in the eastern tropical Pacific, as well as the eastern North Pacific and most of the interior of the North Atlantic. The culprit is suspected to be the inadequate heat forcing and mixing parameterizations of the model. Significant intraseasonal variability is found in the central North Pacific and the Southern Ocean. The simulation is highly correlated with the observation at periods from 20 to 100 days. The spatial scales are larger than 1000 km in many places. These variabilities are apparently the barotropic response of the ocean to wind forcing. The results of the study provide a basis for future assimilation of the data into the OGCM for improved description of the large-scale ocean variabilities.
    Keywords: Oceanography
    Type: Paper 95JC02260 , Journal of Geophysical Research (ISSN 0148-0227); 100; C12; 24,965-24,976
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.
    Keywords: Oceanography
    Type: Climate Variability Program; 10; JPL-Publ-99-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...