ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 57 (2010): 258-283, doi:10.1016/j.dsr.2009.11.006.
    Description: Historical hydrographic data, spanning the period 1896-2006, are used to examine the annual mean and seasonal variations in the distribution of freshwater along and across the shelf/slope boundary along the Labrador and Newfoundland Shelves and the Grand Banks of Newfoundland. Particular attention is paid to the export of freshwater along the eastern Grand Banks, between Flemish Cap and the Tail of the Grand Banks, as this has long been identified as a preferential region for the loss of mass and freshwater from the boundary. The data are combined into isopycnally averaged long-term annual and monthly mean gridded property fields and the evolving distribution of fresh arctic-origin water is analyzed in fields of salinity anomaly, expressed as departures from the “central water” temperature-salinity relation of the Gulf Stream. The climatology confirms that cold/fresh northern-source waters are advected offshore within the retroflecting Labrador Current along the full length of the boundary between Flemish Cap and the Tail of the Grand Banks. In fact, it is estimated that most of the equatorward baroclinic transport at the boundary must retroflect back toward the north in order to explain the annual mean distribution of salinity in the climatology. While the retroflection of the Labrador Current appears seasonally robust, the freshwater distribution within the retroflection region varies in response to (1) the freshness of the water available for export which is set by the arrival and rapid flushing of the seasonal freshwater pulse at the boundary, (2) seasonal buoyancy forcing at the surface which alters the vertical stratification across the retroflection region, restricting certain isopycnal export pathways, and (3) the density structure along the eastern Grand Banks, which defines the progressive retroflection of the Labrador Current.
    Description: This work was supported by a grant from the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute (PF) and by the National Science Foundation under grant OCE-0550423 (PF and MM).
    Keywords: Labrador Current ; Subpolar gyre ; Freshwater ; North Atlantic Current ; Boundary current retroflection
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Chen, Z., Kwon, Y.-O., Chen, K., Fratantoni, P., Gawarkiewicz, G., Joyce, T. M., Miller, T. J., Nye, J. A., Saba, V. S., & Stock, B. C. Seasonal prediction of bottom temperature on the Northeast U.S. Continental Shelf. Journal of Geophysical Research: Oceans, 126(5), (2021): e2021JC017187, https://doi.org/10.1029/2021JC017187.
    Description: The Northeast U.S. shelf (NES) is an oceanographically dynamic marine ecosystem and supports some of the most valuable demersal fisheries in the world. A reliable prediction of NES environmental variables, particularly ocean bottom temperature, could lead to a significant improvement in demersal fisheries management. However, the current generation of climate model-based seasonal-to-interannual predictions exhibits limited prediction skill in this continental shelf environment. Here, we have developed a hierarchy of statistical seasonal predictions for NES bottom temperatures using an eddy-resolving ocean reanalysis data set. A simple, damped local persistence prediction model produces significant skill for lead times up to ∼5 months in the Mid-Atlantic Bight and up to ∼10 months in the Gulf of Maine, although the prediction skill varies notably by season. Considering temperature from a nearby or upstream (i.e., more poleward) region as an additional predictor generally improves prediction skill, presumably as a result of advective processes. Large-scale atmospheric and oceanic indices, such as Gulf Stream path indices (GSIs) and the North Atlantic Oscillation Index, are also tested as predictors for NES bottom temperatures. Only the GSI constructed from temperature observed at 200 m depth significantly improves the prediction skill relative to local persistence. However, the prediction skill from this GSI is not larger than that gained using models incorporating nearby or upstream shelf/slope temperatures. Based on these results, a simplified statistical model has been developed, which can be tailored to fisheries management for the NES.
    Description: This work was supported by NOAA's Climate Program Office's Modeling, Analysis, Predictions, and Projections (MAPP) Program (NA17OAR4310111, NA19OAR4320074), and Climate Program Office's Climate Variability and Predictability (CVP) Program (NA20OAR4310482). We acknowledge our participation in MAPP's Marine Prediction Task Force.
    Keywords: Bottom temperature ; Northeast U.S. shelf ; Seasonal prediction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...