ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 5 (1992), S. 138-145 
    ISSN: 1432-2145
    Keywords: Pollen germination ; ATPases ; Calcium ; Magnesium ; Potassium ; Agapanthus umbelatus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Cytochemical detection of ATPase activity in the pollen grain (PG) and pollen tube (PT) of Agapanthus umbelatus showed that the enzymes concerned presented specific patterns of membrane distribution according to their ionic dependencies and to the timecourse of germination and tube growth. In the pollen tubes Ca2+-ATPases were mainly localized in mitochondria and ER membranes, while Mg2+-ATPases were found especially in the tonoplast and in the membrane of the P-particles. K+-ATPases showed a high activity at the plasma membrane. In the pollen grain similar patterns of ATPase activity were observed. The highest activity of all three types was observed at the plasma membrane of the grain and at the intine and inner exine layers of the cell wall. The activity observed in the pollen grain cell wall decreased with germination time. In vivo germination studies in the presence of specific inhibitors of the ATPases showed patterns of inhibition that could be correlated with the corresponding ATPase putative role. The results are discussed in terms of the ultrastructural organization of the PG and PT, especially those correlated with (1) formation and maintenance of ionic gradients throughout the PT, (2) polarized growth and (3) hydrodynamics of PT elongation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-04
    Description: Compared to animals, evolution of plant calcium (Ca 2+ ) physiology has led to a loss of proteins for influx and small ligand–operated control of cytosolic Ca 2+ , leaving many Ca 2+ mechanisms unaccounted for. Here, we show a mechanism for sorting and activation of glutamate receptor–like channels (GLRs) by CORNICHON HOMOLOG (CNIH) proteins. Single mutants of pollen-expressed Arabidopsis thaliana GLRs ( At GLRs) showed growth and Ca 2+ flux phenotypes expected for plasma membrane Ca 2+ channels. However, higher-order mutants of At GLR3.3 revealed phenotypes contradicting this assumption. These discrepancies could be explained by subcellular At GLR localization, and we explored the implication of At CNIHs in this sorting. We found that At GLRs interact with At CNIH pairs, yielding specific intracellular localizations. At CNIHs further trigger At GLR activity in mammalian cells without any ligand. These results reveal a regulatory mechanism underlying Ca 2+ homeostasis by sorting and activation of At GLRs by At CNIHs.
    Keywords: Botany
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...